Commit defa5614493b6f2be2564623fc28f707d46ee1e8
1 parent
3ef6ddf1
Exists in
master
and in
1 other branch
mnist re-testing...
Showing
3 changed files
with
221 additions
and
31 deletions
Show diff stats
mmodel/theano/THEANO.py
| @@ -37,38 +37,223 @@ class ModelTHEANO(ModelBase): | @@ -37,38 +37,223 @@ class ModelTHEANO(ModelBase): | ||
| 37 | self.sparker = sc | 37 | self.sparker = sc |
| 38 | self.model = None | 38 | self.model = None |
| 39 | 39 | ||
| 40 | - def _shared_dataset(self, data_xy, borrow=True): | ||
| 41 | - """ Function that loads the dataset into shared variables | ||
| 42 | - | ||
| 43 | - The reason we store our dataset in shared variables is to allow | ||
| 44 | - Theano to copy it into the GPU memory (when code is run on GPU). | ||
| 45 | - Since copying data into the GPU is slow, copying a minibatch everytime | ||
| 46 | - is needed (the default behaviour if the data is not in a shared | ||
| 47 | - variable) would lead to a large decrease in performance. | ||
| 48 | - """ | ||
| 49 | - data_x, data_y = data_xy | ||
| 50 | - shared_x = theano.shared(np.asarray(data_x, | ||
| 51 | - dtype=theano.config.floatX), | ||
| 52 | - borrow=borrow) | ||
| 53 | - shared_y = theano.shared(np.asarray(data_y, | ||
| 54 | - dtype=theano.config.floatX), | ||
| 55 | - borrow=borrow) | ||
| 56 | - # When storing data on the GPU it has to be stored as floats | ||
| 57 | - # therefore we will store the labels as ``floatX`` as well | ||
| 58 | - # (``shared_y`` does exactly that). But during our computations | ||
| 59 | - # we need them as ints (we use labels as index, and if they are | ||
| 60 | - # floats it doesn't make sense) therefore instead of returning | ||
| 61 | - # ``shared_y`` we will have to cast it to int. This little hack | ||
| 62 | - # lets ous get around this issue | ||
| 63 | - return shared_x, T.cast(shared_y, 'int32') | ||
| 64 | - | ||
| 65 | - def _train_cnn(self, X=None, Y=None, dataset=os.path.join(package_dir, '../../res/', 'ils_crop.pkl'), | 40 | + def _train_cnn(self, X=None, Y=None, dataset=os.path.join(package_dir, '../../res/', 'mnist.pkl.gz'), |
| 66 | learning_rate=0.1, n_epochs=200, | 41 | learning_rate=0.1, n_epochs=200, |
| 67 | nkerns=[20, 50, 50], | 42 | nkerns=[20, 50, 50], |
| 68 | batch_size=400): | 43 | batch_size=400): |
| 69 | 44 | ||
| 70 | - return train_cnn_example(X, Y, dataset=dataset, learning_rate=learning_rate, n_epochs=n_epochs, nkerns=nkerns, | ||
| 71 | - batch_size=batch_size) | 45 | + # return train_cnn_example(X, Y, dataset=dataset, learning_rate=learning_rate, n_epochs=n_epochs, nkerns=nkerns, |
| 46 | + # batch_size=batch_size) | ||
| 47 | + | ||
| 48 | + with gzip.open(dataset, 'rb') as f: | ||
| 49 | + train_set, valid_set, test_set = cPickle.load(f) | ||
| 50 | + | ||
| 51 | + train_set_x, train_set_y = shared_dataset(train_set) | ||
| 52 | + valid_set_x, valid_set_y = shared_dataset(valid_set) | ||
| 53 | + test_set_x, test_set_y = shared_dataset(test_set) | ||
| 54 | + | ||
| 55 | + # compute number of minibatches for training, validation and testing | ||
| 56 | + n_train_batches = train_set_x.get_value(borrow=True).shape[0] | ||
| 57 | + n_valid_batches = valid_set_x.get_value(borrow=True).shape[0] | ||
| 58 | + n_test_batches = test_set_x.get_value(borrow=True).shape[0] | ||
| 59 | + n_train_batches /= batch_size | ||
| 60 | + n_valid_batches /= batch_size | ||
| 61 | + n_test_batches /= batch_size | ||
| 62 | + | ||
| 63 | + print train_set_x.get_value(borrow=True).shape, train_set_y.get_value(borrow=True).shape | ||
| 64 | + | ||
| 65 | + rng = np.random.RandomState(12306) | ||
| 66 | + index = T.lscalar() # index to a [mini]batch | ||
| 67 | + # start-snippet-1 | ||
| 68 | + x = T.matrix('x') # the data is presented as rasterized images | ||
| 69 | + y = T.ivector('y') # the labels are presented as 1D vector of | ||
| 70 | + # [int] labels | ||
| 71 | + | ||
| 72 | + ###################### | ||
| 73 | + # BUILD ACTUAL MODEL # | ||
| 74 | + ###################### | ||
| 75 | + print '... building the model' | ||
| 76 | + | ||
| 77 | + layer0_input = x.reshape((batch_size, 1, 28, 28)) | ||
| 78 | + | ||
| 79 | + # Construct the first convolutional pooling layer: | ||
| 80 | + # filtering reduces the image size to (28-5+1 , 28-5+1) = (24, 24) | ||
| 81 | + # maxpooling reduces this further to (24/2, 24/2) = (12, 12) | ||
| 82 | + # 4D output tensor is thus of shape (batch_size, nkerns[0], 12, 12) | ||
| 83 | + layer0 = ConvPoolLayer( | ||
| 84 | + rng, | ||
| 85 | + input=layer0_input, | ||
| 86 | + image_shape=(batch_size, 1, 28, 28), | ||
| 87 | + filter_shape=(nkerns[0], 1, 5, 5), | ||
| 88 | + poolsize=(2, 2) | ||
| 89 | + ) | ||
| 90 | + | ||
| 91 | + # Construct the second convolutional pooling layer | ||
| 92 | + # filtering reduces the image size to (12-5+1, 12-5+1) = (8, 8) | ||
| 93 | + # maxpooling reduces this further to (8/2, 8/2) = (4, 4) | ||
| 94 | + # 4D output tensor is thus of shape (batch_size, nkerns[1], 4, 4) | ||
| 95 | + layer1 = ConvPoolLayer( | ||
| 96 | + rng, | ||
| 97 | + input=layer0.output, | ||
| 98 | + image_shape=(batch_size, nkerns[0], 12, 12), | ||
| 99 | + filter_shape=(nkerns[1], nkerns[0], 5, 5), | ||
| 100 | + poolsize=(2, 2) | ||
| 101 | + ) | ||
| 102 | + | ||
| 103 | + # the HiddenLayer being fully-connected, it operates on 2D matrices of | ||
| 104 | + # shape (batch_size, num_pixels) (i.e matrix of rasterized images). | ||
| 105 | + # This will generate a matrix of shape (batch_size, nkerns[1] * 4 * 4), | ||
| 106 | + # or (500, 50 * 4 * 4) = (500, 800) with the default values. | ||
| 107 | + layer2_input = layer1.output.flatten(2) | ||
| 108 | + | ||
| 109 | + # construct a fully-connected sigmoidal layer | ||
| 110 | + layer2 = HiddenLayer( | ||
| 111 | + rng, | ||
| 112 | + input=layer2_input, | ||
| 113 | + n_in=nkerns[1] * 4 * 4, | ||
| 114 | + n_out=500, | ||
| 115 | + activation=T.tanh | ||
| 116 | + ) | ||
| 117 | + | ||
| 118 | + # classify the values of the fully-connected sigmoidal layer | ||
| 119 | + layer3 = LogisticRegression(input=layer2.output, n_in=500, n_out=10) | ||
| 120 | + | ||
| 121 | + # the cost we minimize during training is the NLL of the model | ||
| 122 | + cost = layer3.negative_log_likelihood(y) | ||
| 123 | + | ||
| 124 | + # create a function to compute the mistakes that are made by the model | ||
| 125 | + test_model = theano.function( | ||
| 126 | + [index], | ||
| 127 | + layer3.errors(y), | ||
| 128 | + givens={ | ||
| 129 | + x: test_set_x[index * batch_size: (index + 1) * batch_size], | ||
| 130 | + y: test_set_y[index * batch_size: (index + 1) * batch_size] | ||
| 131 | + } | ||
| 132 | + ) | ||
| 133 | + | ||
| 134 | + validate_model = theano.function( | ||
| 135 | + [index], | ||
| 136 | + layer3.errors(y), | ||
| 137 | + givens={ | ||
| 138 | + x: valid_set_x[index * batch_size: (index + 1) * batch_size], | ||
| 139 | + y: valid_set_y[index * batch_size: (index + 1) * batch_size] | ||
| 140 | + } | ||
| 141 | + ) | ||
| 142 | + | ||
| 143 | + # create a list of all model parameters to be fit by gradient descent | ||
| 144 | + params = layer3.params + layer2.params + layer1.params + layer0.params | ||
| 145 | + | ||
| 146 | + # create a list of gradients for all model parameters | ||
| 147 | + grads = T.grad(cost, params) | ||
| 148 | + | ||
| 149 | + # train_model is a function that updates the model parameters by | ||
| 150 | + # SGD Since this model has many parameters, it would be tedious to | ||
| 151 | + # manually create an update rule for each model parameter. We thus | ||
| 152 | + # create the updates list by automatically looping over all | ||
| 153 | + # (params[i], grads[i]) pairs. | ||
| 154 | + updates = [ | ||
| 155 | + (param_i, param_i - learning_rate * grad_i) | ||
| 156 | + for param_i, grad_i in zip(params, grads) | ||
| 157 | + ] | ||
| 158 | + | ||
| 159 | + train_model = theano.function( | ||
| 160 | + [index], | ||
| 161 | + cost, | ||
| 162 | + updates=updates, | ||
| 163 | + givens={ | ||
| 164 | + x: train_set_x[index * batch_size: (index + 1) * batch_size], | ||
| 165 | + y: train_set_y[index * batch_size: (index + 1) * batch_size] | ||
| 166 | + } | ||
| 167 | + ) | ||
| 168 | + # end-snippet-1 | ||
| 169 | + | ||
| 170 | + ############### | ||
| 171 | + # TRAIN MODEL # | ||
| 172 | + ############### | ||
| 173 | + print '... training' | ||
| 174 | + # early-stopping parameters | ||
| 175 | + patience = 10000 # look as this many examples regardless | ||
| 176 | + patience_increase = 2 # wait this much longer when a new best is | ||
| 177 | + # found | ||
| 178 | + improvement_threshold = 0.995 # a relative improvement of this much is | ||
| 179 | + # considered significant | ||
| 180 | + validation_frequency = min(n_train_batches, patience / 2) | ||
| 181 | + # go through this many | ||
| 182 | + # minibatche before checking the network | ||
| 183 | + # on the validation set; in this case we | ||
| 184 | + # check every epoch | ||
| 185 | + | ||
| 186 | + best_validation_loss = np.inf | ||
| 187 | + best_iter = 0 | ||
| 188 | + test_score = 0. | ||
| 189 | + start_time = time.clock() | ||
| 190 | + | ||
| 191 | + epoch = 0 | ||
| 192 | + done_looping = False | ||
| 193 | + | ||
| 194 | + while (epoch < n_epochs) and (not done_looping): | ||
| 195 | + epoch = epoch + 1 | ||
| 196 | + for minibatch_index in xrange(n_train_batches): | ||
| 197 | + | ||
| 198 | + iter = (epoch - 1) * n_train_batches + minibatch_index | ||
| 199 | + | ||
| 200 | + if iter % 100 == 0: | ||
| 201 | + print 'training @ iter = ', iter | ||
| 202 | + cost_ij = train_model(minibatch_index) | ||
| 203 | + | ||
| 204 | + if (iter + 1) % validation_frequency == 0: | ||
| 205 | + | ||
| 206 | + # compute zero-one loss on validation set | ||
| 207 | + validation_losses = [validate_model(i) for i | ||
| 208 | + in xrange(n_valid_batches)] | ||
| 209 | + this_validation_loss = np.mean(validation_losses) | ||
| 210 | + print('epoch %i, minibatch %i/%i, validation error %f %%' % | ||
| 211 | + (epoch, minibatch_index + 1, n_train_batches, | ||
| 212 | + this_validation_loss * 100.)) | ||
| 213 | + | ||
| 214 | + # if we got the best validation score until now | ||
| 215 | + if this_validation_loss < best_validation_loss: | ||
| 216 | + | ||
| 217 | + #improve patience if loss improvement is good enough | ||
| 218 | + if this_validation_loss < best_validation_loss * \ | ||
| 219 | + improvement_threshold: | ||
| 220 | + patience = max(patience, iter * patience_increase) | ||
| 221 | + | ||
| 222 | + # save best validation score and iteration number | ||
| 223 | + best_validation_loss = this_validation_loss | ||
| 224 | + best_iter = iter | ||
| 225 | + | ||
| 226 | + # test it on the test set | ||
| 227 | + test_losses = [ | ||
| 228 | + test_model(i) | ||
| 229 | + for i in xrange(n_test_batches) | ||
| 230 | + ] | ||
| 231 | + test_score = np.mean(test_losses) | ||
| 232 | + print((' epoch %i, minibatch %i/%i, test error of ' | ||
| 233 | + 'best model %f %%') % | ||
| 234 | + (epoch, minibatch_index + 1, n_train_batches, | ||
| 235 | + test_score * 100.)) | ||
| 236 | + | ||
| 237 | + if patience <= iter: | ||
| 238 | + done_looping = True | ||
| 239 | + break | ||
| 240 | + | ||
| 241 | + end_time = time.clock() | ||
| 242 | + print('Optimization complete.') | ||
| 243 | + print('Best validation score of %f %% obtained at iteration %i, ' | ||
| 244 | + 'with test performance %f %%' % | ||
| 245 | + (best_validation_loss * 100., best_iter + 1, test_score * 100.)) | ||
| 246 | + print >> sys.stderr, ('The code for file ' + | ||
| 247 | + os.path.split(__file__)[1] + | ||
| 248 | + ' ran for %.2fm' % ((end_time - start_time) / 60.)) | ||
| 249 | + | ||
| 250 | + | ||
| 251 | + | ||
| 252 | + | ||
| 253 | + | ||
| 254 | + | ||
| 255 | + | ||
| 256 | + | ||
| 72 | 257 | ||
| 73 | 258 | ||
| 74 | def train(self, X, Y): | 259 | def train(self, X, Y): |
mmodel/theano/theanoutil.py
| @@ -168,7 +168,7 @@ class ConvPoolLayer(object): | @@ -168,7 +168,7 @@ class ConvPoolLayer(object): | ||
| 168 | self.output = T.tanh(pooled_out + self.b.dimshuffle('x', 0, 'x', 'x')) | 168 | self.output = T.tanh(pooled_out + self.b.dimshuffle('x', 0, 'x', 'x')) |
| 169 | self.params = [self.W, self.b] | 169 | self.params = [self.W, self.b] |
| 170 | 170 | ||
| 171 | -def _shared_dataset(data_xy, borrow=True): | 171 | +def shared_dataset(data_xy, borrow=True): |
| 172 | """ Function that loads the dataset into shared variables | 172 | """ Function that loads the dataset into shared variables |
| 173 | 173 | ||
| 174 | The reason we store our dataset in shared variables is to allow | 174 | The reason we store our dataset in shared variables is to allow |
| @@ -208,8 +208,8 @@ def train_cnn_example(X=None, Y=None, dataset=os.path.join('', '../../res/', 'il | @@ -208,8 +208,8 @@ def train_cnn_example(X=None, Y=None, dataset=os.path.join('', '../../res/', 'il | ||
| 208 | else: | 208 | else: |
| 209 | X_train, X_test, Y_train, Y_test = cross_validation.train_test_split(X, Y, test_size=0.2, random_state=0) | 209 | X_train, X_test, Y_train, Y_test = cross_validation.train_test_split(X, Y, test_size=0.2, random_state=0) |
| 210 | 210 | ||
| 211 | - X_train, Y_train = _shared_dataset((X_train, Y_train)) | ||
| 212 | - X_test, Y_test = _shared_dataset((X_test, Y_test)) | 211 | + X_train, Y_train = shared_dataset((X_train, Y_train)) |
| 212 | + X_test, Y_test = shared_dataset((X_test, Y_test)) | ||
| 213 | 213 | ||
| 214 | # X_train = theano.shared(np.asarray(X_train, dtype=theano.config.floatX), borrow=True) | 214 | # X_train = theano.shared(np.asarray(X_train, dtype=theano.config.floatX), borrow=True) |
| 215 | # Y_train = theano.shared(np.asarray(Y_train, dtype=theano.config.floatX), borrow=True) | 215 | # Y_train = theano.shared(np.asarray(Y_train, dtype=theano.config.floatX), borrow=True) |
test/test_model.py
| @@ -149,6 +149,11 @@ def test_SVM_ILSVRC_S(): | @@ -149,6 +149,11 @@ def test_SVM_ILSVRC_S(): | ||
| 149 | # test_SVM_ILSVRC_SPARK() | 149 | # test_SVM_ILSVRC_SPARK() |
| 150 | 150 | ||
| 151 | 151 | ||
| 152 | +def test_THEANO_mnist(): | ||
| 153 | + mtheano = THEANO.ModelTHEANO(toolset='cnn') | ||
| 154 | + mtheano._train_cnn(learning_rate=0.1, n_epochs=200, dataset=os.path.join(package_dir, '../res/', 'mnist.pkl.gz'), nkerns=[20, 50], batch_size=500) | ||
| 155 | + | ||
| 156 | + | ||
| 152 | def test_THEANO_crop(): | 157 | def test_THEANO_crop(): |
| 153 | timer.mark() | 158 | timer.mark() |
| 154 | dilc = ILSVRC.DataILSVRC(base_dir='/data/hadoop/ImageNet/ILSVRC/ILSVRC2013_DET_val', category='Test_crop_pil') | 159 | dilc = ILSVRC.DataILSVRC(base_dir='/data/hadoop/ImageNet/ILSVRC/ILSVRC2013_DET_val', category='Test_crop_pil') |