Commit defa5614493b6f2be2564623fc28f707d46ee1e8
1 parent
3ef6ddf1
Exists in
master
and in
1 other branch
mnist re-testing...
Showing
3 changed files
with
221 additions
and
31 deletions
Show diff stats
mmodel/theano/THEANO.py
| ... | ... | @@ -37,38 +37,223 @@ class ModelTHEANO(ModelBase): |
| 37 | 37 | self.sparker = sc |
| 38 | 38 | self.model = None |
| 39 | 39 | |
| 40 | - def _shared_dataset(self, data_xy, borrow=True): | |
| 41 | - """ Function that loads the dataset into shared variables | |
| 42 | - | |
| 43 | - The reason we store our dataset in shared variables is to allow | |
| 44 | - Theano to copy it into the GPU memory (when code is run on GPU). | |
| 45 | - Since copying data into the GPU is slow, copying a minibatch everytime | |
| 46 | - is needed (the default behaviour if the data is not in a shared | |
| 47 | - variable) would lead to a large decrease in performance. | |
| 48 | - """ | |
| 49 | - data_x, data_y = data_xy | |
| 50 | - shared_x = theano.shared(np.asarray(data_x, | |
| 51 | - dtype=theano.config.floatX), | |
| 52 | - borrow=borrow) | |
| 53 | - shared_y = theano.shared(np.asarray(data_y, | |
| 54 | - dtype=theano.config.floatX), | |
| 55 | - borrow=borrow) | |
| 56 | - # When storing data on the GPU it has to be stored as floats | |
| 57 | - # therefore we will store the labels as ``floatX`` as well | |
| 58 | - # (``shared_y`` does exactly that). But during our computations | |
| 59 | - # we need them as ints (we use labels as index, and if they are | |
| 60 | - # floats it doesn't make sense) therefore instead of returning | |
| 61 | - # ``shared_y`` we will have to cast it to int. This little hack | |
| 62 | - # lets ous get around this issue | |
| 63 | - return shared_x, T.cast(shared_y, 'int32') | |
| 64 | - | |
| 65 | - def _train_cnn(self, X=None, Y=None, dataset=os.path.join(package_dir, '../../res/', 'ils_crop.pkl'), | |
| 40 | + def _train_cnn(self, X=None, Y=None, dataset=os.path.join(package_dir, '../../res/', 'mnist.pkl.gz'), | |
| 66 | 41 | learning_rate=0.1, n_epochs=200, |
| 67 | 42 | nkerns=[20, 50, 50], |
| 68 | 43 | batch_size=400): |
| 69 | 44 | |
| 70 | - return train_cnn_example(X, Y, dataset=dataset, learning_rate=learning_rate, n_epochs=n_epochs, nkerns=nkerns, | |
| 71 | - batch_size=batch_size) | |
| 45 | + # return train_cnn_example(X, Y, dataset=dataset, learning_rate=learning_rate, n_epochs=n_epochs, nkerns=nkerns, | |
| 46 | + # batch_size=batch_size) | |
| 47 | + | |
| 48 | + with gzip.open(dataset, 'rb') as f: | |
| 49 | + train_set, valid_set, test_set = cPickle.load(f) | |
| 50 | + | |
| 51 | + train_set_x, train_set_y = shared_dataset(train_set) | |
| 52 | + valid_set_x, valid_set_y = shared_dataset(valid_set) | |
| 53 | + test_set_x, test_set_y = shared_dataset(test_set) | |
| 54 | + | |
| 55 | + # compute number of minibatches for training, validation and testing | |
| 56 | + n_train_batches = train_set_x.get_value(borrow=True).shape[0] | |
| 57 | + n_valid_batches = valid_set_x.get_value(borrow=True).shape[0] | |
| 58 | + n_test_batches = test_set_x.get_value(borrow=True).shape[0] | |
| 59 | + n_train_batches /= batch_size | |
| 60 | + n_valid_batches /= batch_size | |
| 61 | + n_test_batches /= batch_size | |
| 62 | + | |
| 63 | + print train_set_x.get_value(borrow=True).shape, train_set_y.get_value(borrow=True).shape | |
| 64 | + | |
| 65 | + rng = np.random.RandomState(12306) | |
| 66 | + index = T.lscalar() # index to a [mini]batch | |
| 67 | + # start-snippet-1 | |
| 68 | + x = T.matrix('x') # the data is presented as rasterized images | |
| 69 | + y = T.ivector('y') # the labels are presented as 1D vector of | |
| 70 | + # [int] labels | |
| 71 | + | |
| 72 | + ###################### | |
| 73 | + # BUILD ACTUAL MODEL # | |
| 74 | + ###################### | |
| 75 | + print '... building the model' | |
| 76 | + | |
| 77 | + layer0_input = x.reshape((batch_size, 1, 28, 28)) | |
| 78 | + | |
| 79 | + # Construct the first convolutional pooling layer: | |
| 80 | + # filtering reduces the image size to (28-5+1 , 28-5+1) = (24, 24) | |
| 81 | + # maxpooling reduces this further to (24/2, 24/2) = (12, 12) | |
| 82 | + # 4D output tensor is thus of shape (batch_size, nkerns[0], 12, 12) | |
| 83 | + layer0 = ConvPoolLayer( | |
| 84 | + rng, | |
| 85 | + input=layer0_input, | |
| 86 | + image_shape=(batch_size, 1, 28, 28), | |
| 87 | + filter_shape=(nkerns[0], 1, 5, 5), | |
| 88 | + poolsize=(2, 2) | |
| 89 | + ) | |
| 90 | + | |
| 91 | + # Construct the second convolutional pooling layer | |
| 92 | + # filtering reduces the image size to (12-5+1, 12-5+1) = (8, 8) | |
| 93 | + # maxpooling reduces this further to (8/2, 8/2) = (4, 4) | |
| 94 | + # 4D output tensor is thus of shape (batch_size, nkerns[1], 4, 4) | |
| 95 | + layer1 = ConvPoolLayer( | |
| 96 | + rng, | |
| 97 | + input=layer0.output, | |
| 98 | + image_shape=(batch_size, nkerns[0], 12, 12), | |
| 99 | + filter_shape=(nkerns[1], nkerns[0], 5, 5), | |
| 100 | + poolsize=(2, 2) | |
| 101 | + ) | |
| 102 | + | |
| 103 | + # the HiddenLayer being fully-connected, it operates on 2D matrices of | |
| 104 | + # shape (batch_size, num_pixels) (i.e matrix of rasterized images). | |
| 105 | + # This will generate a matrix of shape (batch_size, nkerns[1] * 4 * 4), | |
| 106 | + # or (500, 50 * 4 * 4) = (500, 800) with the default values. | |
| 107 | + layer2_input = layer1.output.flatten(2) | |
| 108 | + | |
| 109 | + # construct a fully-connected sigmoidal layer | |
| 110 | + layer2 = HiddenLayer( | |
| 111 | + rng, | |
| 112 | + input=layer2_input, | |
| 113 | + n_in=nkerns[1] * 4 * 4, | |
| 114 | + n_out=500, | |
| 115 | + activation=T.tanh | |
| 116 | + ) | |
| 117 | + | |
| 118 | + # classify the values of the fully-connected sigmoidal layer | |
| 119 | + layer3 = LogisticRegression(input=layer2.output, n_in=500, n_out=10) | |
| 120 | + | |
| 121 | + # the cost we minimize during training is the NLL of the model | |
| 122 | + cost = layer3.negative_log_likelihood(y) | |
| 123 | + | |
| 124 | + # create a function to compute the mistakes that are made by the model | |
| 125 | + test_model = theano.function( | |
| 126 | + [index], | |
| 127 | + layer3.errors(y), | |
| 128 | + givens={ | |
| 129 | + x: test_set_x[index * batch_size: (index + 1) * batch_size], | |
| 130 | + y: test_set_y[index * batch_size: (index + 1) * batch_size] | |
| 131 | + } | |
| 132 | + ) | |
| 133 | + | |
| 134 | + validate_model = theano.function( | |
| 135 | + [index], | |
| 136 | + layer3.errors(y), | |
| 137 | + givens={ | |
| 138 | + x: valid_set_x[index * batch_size: (index + 1) * batch_size], | |
| 139 | + y: valid_set_y[index * batch_size: (index + 1) * batch_size] | |
| 140 | + } | |
| 141 | + ) | |
| 142 | + | |
| 143 | + # create a list of all model parameters to be fit by gradient descent | |
| 144 | + params = layer3.params + layer2.params + layer1.params + layer0.params | |
| 145 | + | |
| 146 | + # create a list of gradients for all model parameters | |
| 147 | + grads = T.grad(cost, params) | |
| 148 | + | |
| 149 | + # train_model is a function that updates the model parameters by | |
| 150 | + # SGD Since this model has many parameters, it would be tedious to | |
| 151 | + # manually create an update rule for each model parameter. We thus | |
| 152 | + # create the updates list by automatically looping over all | |
| 153 | + # (params[i], grads[i]) pairs. | |
| 154 | + updates = [ | |
| 155 | + (param_i, param_i - learning_rate * grad_i) | |
| 156 | + for param_i, grad_i in zip(params, grads) | |
| 157 | + ] | |
| 158 | + | |
| 159 | + train_model = theano.function( | |
| 160 | + [index], | |
| 161 | + cost, | |
| 162 | + updates=updates, | |
| 163 | + givens={ | |
| 164 | + x: train_set_x[index * batch_size: (index + 1) * batch_size], | |
| 165 | + y: train_set_y[index * batch_size: (index + 1) * batch_size] | |
| 166 | + } | |
| 167 | + ) | |
| 168 | + # end-snippet-1 | |
| 169 | + | |
| 170 | + ############### | |
| 171 | + # TRAIN MODEL # | |
| 172 | + ############### | |
| 173 | + print '... training' | |
| 174 | + # early-stopping parameters | |
| 175 | + patience = 10000 # look as this many examples regardless | |
| 176 | + patience_increase = 2 # wait this much longer when a new best is | |
| 177 | + # found | |
| 178 | + improvement_threshold = 0.995 # a relative improvement of this much is | |
| 179 | + # considered significant | |
| 180 | + validation_frequency = min(n_train_batches, patience / 2) | |
| 181 | + # go through this many | |
| 182 | + # minibatche before checking the network | |
| 183 | + # on the validation set; in this case we | |
| 184 | + # check every epoch | |
| 185 | + | |
| 186 | + best_validation_loss = np.inf | |
| 187 | + best_iter = 0 | |
| 188 | + test_score = 0. | |
| 189 | + start_time = time.clock() | |
| 190 | + | |
| 191 | + epoch = 0 | |
| 192 | + done_looping = False | |
| 193 | + | |
| 194 | + while (epoch < n_epochs) and (not done_looping): | |
| 195 | + epoch = epoch + 1 | |
| 196 | + for minibatch_index in xrange(n_train_batches): | |
| 197 | + | |
| 198 | + iter = (epoch - 1) * n_train_batches + minibatch_index | |
| 199 | + | |
| 200 | + if iter % 100 == 0: | |
| 201 | + print 'training @ iter = ', iter | |
| 202 | + cost_ij = train_model(minibatch_index) | |
| 203 | + | |
| 204 | + if (iter + 1) % validation_frequency == 0: | |
| 205 | + | |
| 206 | + # compute zero-one loss on validation set | |
| 207 | + validation_losses = [validate_model(i) for i | |
| 208 | + in xrange(n_valid_batches)] | |
| 209 | + this_validation_loss = np.mean(validation_losses) | |
| 210 | + print('epoch %i, minibatch %i/%i, validation error %f %%' % | |
| 211 | + (epoch, minibatch_index + 1, n_train_batches, | |
| 212 | + this_validation_loss * 100.)) | |
| 213 | + | |
| 214 | + # if we got the best validation score until now | |
| 215 | + if this_validation_loss < best_validation_loss: | |
| 216 | + | |
| 217 | + #improve patience if loss improvement is good enough | |
| 218 | + if this_validation_loss < best_validation_loss * \ | |
| 219 | + improvement_threshold: | |
| 220 | + patience = max(patience, iter * patience_increase) | |
| 221 | + | |
| 222 | + # save best validation score and iteration number | |
| 223 | + best_validation_loss = this_validation_loss | |
| 224 | + best_iter = iter | |
| 225 | + | |
| 226 | + # test it on the test set | |
| 227 | + test_losses = [ | |
| 228 | + test_model(i) | |
| 229 | + for i in xrange(n_test_batches) | |
| 230 | + ] | |
| 231 | + test_score = np.mean(test_losses) | |
| 232 | + print((' epoch %i, minibatch %i/%i, test error of ' | |
| 233 | + 'best model %f %%') % | |
| 234 | + (epoch, minibatch_index + 1, n_train_batches, | |
| 235 | + test_score * 100.)) | |
| 236 | + | |
| 237 | + if patience <= iter: | |
| 238 | + done_looping = True | |
| 239 | + break | |
| 240 | + | |
| 241 | + end_time = time.clock() | |
| 242 | + print('Optimization complete.') | |
| 243 | + print('Best validation score of %f %% obtained at iteration %i, ' | |
| 244 | + 'with test performance %f %%' % | |
| 245 | + (best_validation_loss * 100., best_iter + 1, test_score * 100.)) | |
| 246 | + print >> sys.stderr, ('The code for file ' + | |
| 247 | + os.path.split(__file__)[1] + | |
| 248 | + ' ran for %.2fm' % ((end_time - start_time) / 60.)) | |
| 249 | + | |
| 250 | + | |
| 251 | + | |
| 252 | + | |
| 253 | + | |
| 254 | + | |
| 255 | + | |
| 256 | + | |
| 72 | 257 | |
| 73 | 258 | |
| 74 | 259 | def train(self, X, Y): | ... | ... |
mmodel/theano/theanoutil.py
| ... | ... | @@ -168,7 +168,7 @@ class ConvPoolLayer(object): |
| 168 | 168 | self.output = T.tanh(pooled_out + self.b.dimshuffle('x', 0, 'x', 'x')) |
| 169 | 169 | self.params = [self.W, self.b] |
| 170 | 170 | |
| 171 | -def _shared_dataset(data_xy, borrow=True): | |
| 171 | +def shared_dataset(data_xy, borrow=True): | |
| 172 | 172 | """ Function that loads the dataset into shared variables |
| 173 | 173 | |
| 174 | 174 | The reason we store our dataset in shared variables is to allow |
| ... | ... | @@ -208,8 +208,8 @@ def train_cnn_example(X=None, Y=None, dataset=os.path.join('', '../../res/', 'il |
| 208 | 208 | else: |
| 209 | 209 | X_train, X_test, Y_train, Y_test = cross_validation.train_test_split(X, Y, test_size=0.2, random_state=0) |
| 210 | 210 | |
| 211 | - X_train, Y_train = _shared_dataset((X_train, Y_train)) | |
| 212 | - X_test, Y_test = _shared_dataset((X_test, Y_test)) | |
| 211 | + X_train, Y_train = shared_dataset((X_train, Y_train)) | |
| 212 | + X_test, Y_test = shared_dataset((X_test, Y_test)) | |
| 213 | 213 | |
| 214 | 214 | # X_train = theano.shared(np.asarray(X_train, dtype=theano.config.floatX), borrow=True) |
| 215 | 215 | # Y_train = theano.shared(np.asarray(Y_train, dtype=theano.config.floatX), borrow=True) | ... | ... |
test/test_model.py
| ... | ... | @@ -149,6 +149,11 @@ def test_SVM_ILSVRC_S(): |
| 149 | 149 | # test_SVM_ILSVRC_SPARK() |
| 150 | 150 | |
| 151 | 151 | |
| 152 | +def test_THEANO_mnist(): | |
| 153 | + mtheano = THEANO.ModelTHEANO(toolset='cnn') | |
| 154 | + mtheano._train_cnn(learning_rate=0.1, n_epochs=200, dataset=os.path.join(package_dir, '../res/', 'mnist.pkl.gz'), nkerns=[20, 50], batch_size=500) | |
| 155 | + | |
| 156 | + | |
| 152 | 157 | def test_THEANO_crop(): |
| 153 | 158 | timer.mark() |
| 154 | 159 | dilc = ILSVRC.DataILSVRC(base_dir='/data/hadoop/ImageNet/ILSVRC/ILSVRC2013_DET_val', category='Test_crop_pil') | ... | ... |