Commit defa5614493b6f2be2564623fc28f707d46ee1e8

Authored by Chunk
1 parent 3ef6ddf1
Exists in master and in 1 other branch refactor

mnist re-testing...

mmodel/theano/THEANO.py
... ... @@ -37,38 +37,223 @@ class ModelTHEANO(ModelBase):
37 37 self.sparker = sc
38 38 self.model = None
39 39  
40   - def _shared_dataset(self, data_xy, borrow=True):
41   - """ Function that loads the dataset into shared variables
42   -
43   - The reason we store our dataset in shared variables is to allow
44   - Theano to copy it into the GPU memory (when code is run on GPU).
45   - Since copying data into the GPU is slow, copying a minibatch everytime
46   - is needed (the default behaviour if the data is not in a shared
47   - variable) would lead to a large decrease in performance.
48   - """
49   - data_x, data_y = data_xy
50   - shared_x = theano.shared(np.asarray(data_x,
51   - dtype=theano.config.floatX),
52   - borrow=borrow)
53   - shared_y = theano.shared(np.asarray(data_y,
54   - dtype=theano.config.floatX),
55   - borrow=borrow)
56   - # When storing data on the GPU it has to be stored as floats
57   - # therefore we will store the labels as ``floatX`` as well
58   - # (``shared_y`` does exactly that). But during our computations
59   - # we need them as ints (we use labels as index, and if they are
60   - # floats it doesn't make sense) therefore instead of returning
61   - # ``shared_y`` we will have to cast it to int. This little hack
62   - # lets ous get around this issue
63   - return shared_x, T.cast(shared_y, 'int32')
64   -
65   - def _train_cnn(self, X=None, Y=None, dataset=os.path.join(package_dir, '../../res/', 'ils_crop.pkl'),
  40 + def _train_cnn(self, X=None, Y=None, dataset=os.path.join(package_dir, '../../res/', 'mnist.pkl.gz'),
66 41 learning_rate=0.1, n_epochs=200,
67 42 nkerns=[20, 50, 50],
68 43 batch_size=400):
69 44  
70   - return train_cnn_example(X, Y, dataset=dataset, learning_rate=learning_rate, n_epochs=n_epochs, nkerns=nkerns,
71   - batch_size=batch_size)
  45 + # return train_cnn_example(X, Y, dataset=dataset, learning_rate=learning_rate, n_epochs=n_epochs, nkerns=nkerns,
  46 + # batch_size=batch_size)
  47 +
  48 + with gzip.open(dataset, 'rb') as f:
  49 + train_set, valid_set, test_set = cPickle.load(f)
  50 +
  51 + train_set_x, train_set_y = shared_dataset(train_set)
  52 + valid_set_x, valid_set_y = shared_dataset(valid_set)
  53 + test_set_x, test_set_y = shared_dataset(test_set)
  54 +
  55 + # compute number of minibatches for training, validation and testing
  56 + n_train_batches = train_set_x.get_value(borrow=True).shape[0]
  57 + n_valid_batches = valid_set_x.get_value(borrow=True).shape[0]
  58 + n_test_batches = test_set_x.get_value(borrow=True).shape[0]
  59 + n_train_batches /= batch_size
  60 + n_valid_batches /= batch_size
  61 + n_test_batches /= batch_size
  62 +
  63 + print train_set_x.get_value(borrow=True).shape, train_set_y.get_value(borrow=True).shape
  64 +
  65 + rng = np.random.RandomState(12306)
  66 + index = T.lscalar() # index to a [mini]batch
  67 + # start-snippet-1
  68 + x = T.matrix('x') # the data is presented as rasterized images
  69 + y = T.ivector('y') # the labels are presented as 1D vector of
  70 + # [int] labels
  71 +
  72 + ######################
  73 + # BUILD ACTUAL MODEL #
  74 + ######################
  75 + print '... building the model'
  76 +
  77 + layer0_input = x.reshape((batch_size, 1, 28, 28))
  78 +
  79 + # Construct the first convolutional pooling layer:
  80 + # filtering reduces the image size to (28-5+1 , 28-5+1) = (24, 24)
  81 + # maxpooling reduces this further to (24/2, 24/2) = (12, 12)
  82 + # 4D output tensor is thus of shape (batch_size, nkerns[0], 12, 12)
  83 + layer0 = ConvPoolLayer(
  84 + rng,
  85 + input=layer0_input,
  86 + image_shape=(batch_size, 1, 28, 28),
  87 + filter_shape=(nkerns[0], 1, 5, 5),
  88 + poolsize=(2, 2)
  89 + )
  90 +
  91 + # Construct the second convolutional pooling layer
  92 + # filtering reduces the image size to (12-5+1, 12-5+1) = (8, 8)
  93 + # maxpooling reduces this further to (8/2, 8/2) = (4, 4)
  94 + # 4D output tensor is thus of shape (batch_size, nkerns[1], 4, 4)
  95 + layer1 = ConvPoolLayer(
  96 + rng,
  97 + input=layer0.output,
  98 + image_shape=(batch_size, nkerns[0], 12, 12),
  99 + filter_shape=(nkerns[1], nkerns[0], 5, 5),
  100 + poolsize=(2, 2)
  101 + )
  102 +
  103 + # the HiddenLayer being fully-connected, it operates on 2D matrices of
  104 + # shape (batch_size, num_pixels) (i.e matrix of rasterized images).
  105 + # This will generate a matrix of shape (batch_size, nkerns[1] * 4 * 4),
  106 + # or (500, 50 * 4 * 4) = (500, 800) with the default values.
  107 + layer2_input = layer1.output.flatten(2)
  108 +
  109 + # construct a fully-connected sigmoidal layer
  110 + layer2 = HiddenLayer(
  111 + rng,
  112 + input=layer2_input,
  113 + n_in=nkerns[1] * 4 * 4,
  114 + n_out=500,
  115 + activation=T.tanh
  116 + )
  117 +
  118 + # classify the values of the fully-connected sigmoidal layer
  119 + layer3 = LogisticRegression(input=layer2.output, n_in=500, n_out=10)
  120 +
  121 + # the cost we minimize during training is the NLL of the model
  122 + cost = layer3.negative_log_likelihood(y)
  123 +
  124 + # create a function to compute the mistakes that are made by the model
  125 + test_model = theano.function(
  126 + [index],
  127 + layer3.errors(y),
  128 + givens={
  129 + x: test_set_x[index * batch_size: (index + 1) * batch_size],
  130 + y: test_set_y[index * batch_size: (index + 1) * batch_size]
  131 + }
  132 + )
  133 +
  134 + validate_model = theano.function(
  135 + [index],
  136 + layer3.errors(y),
  137 + givens={
  138 + x: valid_set_x[index * batch_size: (index + 1) * batch_size],
  139 + y: valid_set_y[index * batch_size: (index + 1) * batch_size]
  140 + }
  141 + )
  142 +
  143 + # create a list of all model parameters to be fit by gradient descent
  144 + params = layer3.params + layer2.params + layer1.params + layer0.params
  145 +
  146 + # create a list of gradients for all model parameters
  147 + grads = T.grad(cost, params)
  148 +
  149 + # train_model is a function that updates the model parameters by
  150 + # SGD Since this model has many parameters, it would be tedious to
  151 + # manually create an update rule for each model parameter. We thus
  152 + # create the updates list by automatically looping over all
  153 + # (params[i], grads[i]) pairs.
  154 + updates = [
  155 + (param_i, param_i - learning_rate * grad_i)
  156 + for param_i, grad_i in zip(params, grads)
  157 + ]
  158 +
  159 + train_model = theano.function(
  160 + [index],
  161 + cost,
  162 + updates=updates,
  163 + givens={
  164 + x: train_set_x[index * batch_size: (index + 1) * batch_size],
  165 + y: train_set_y[index * batch_size: (index + 1) * batch_size]
  166 + }
  167 + )
  168 + # end-snippet-1
  169 +
  170 + ###############
  171 + # TRAIN MODEL #
  172 + ###############
  173 + print '... training'
  174 + # early-stopping parameters
  175 + patience = 10000 # look as this many examples regardless
  176 + patience_increase = 2 # wait this much longer when a new best is
  177 + # found
  178 + improvement_threshold = 0.995 # a relative improvement of this much is
  179 + # considered significant
  180 + validation_frequency = min(n_train_batches, patience / 2)
  181 + # go through this many
  182 + # minibatche before checking the network
  183 + # on the validation set; in this case we
  184 + # check every epoch
  185 +
  186 + best_validation_loss = np.inf
  187 + best_iter = 0
  188 + test_score = 0.
  189 + start_time = time.clock()
  190 +
  191 + epoch = 0
  192 + done_looping = False
  193 +
  194 + while (epoch < n_epochs) and (not done_looping):
  195 + epoch = epoch + 1
  196 + for minibatch_index in xrange(n_train_batches):
  197 +
  198 + iter = (epoch - 1) * n_train_batches + minibatch_index
  199 +
  200 + if iter % 100 == 0:
  201 + print 'training @ iter = ', iter
  202 + cost_ij = train_model(minibatch_index)
  203 +
  204 + if (iter + 1) % validation_frequency == 0:
  205 +
  206 + # compute zero-one loss on validation set
  207 + validation_losses = [validate_model(i) for i
  208 + in xrange(n_valid_batches)]
  209 + this_validation_loss = np.mean(validation_losses)
  210 + print('epoch %i, minibatch %i/%i, validation error %f %%' %
  211 + (epoch, minibatch_index + 1, n_train_batches,
  212 + this_validation_loss * 100.))
  213 +
  214 + # if we got the best validation score until now
  215 + if this_validation_loss < best_validation_loss:
  216 +
  217 + #improve patience if loss improvement is good enough
  218 + if this_validation_loss < best_validation_loss * \
  219 + improvement_threshold:
  220 + patience = max(patience, iter * patience_increase)
  221 +
  222 + # save best validation score and iteration number
  223 + best_validation_loss = this_validation_loss
  224 + best_iter = iter
  225 +
  226 + # test it on the test set
  227 + test_losses = [
  228 + test_model(i)
  229 + for i in xrange(n_test_batches)
  230 + ]
  231 + test_score = np.mean(test_losses)
  232 + print((' epoch %i, minibatch %i/%i, test error of '
  233 + 'best model %f %%') %
  234 + (epoch, minibatch_index + 1, n_train_batches,
  235 + test_score * 100.))
  236 +
  237 + if patience <= iter:
  238 + done_looping = True
  239 + break
  240 +
  241 + end_time = time.clock()
  242 + print('Optimization complete.')
  243 + print('Best validation score of %f %% obtained at iteration %i, '
  244 + 'with test performance %f %%' %
  245 + (best_validation_loss * 100., best_iter + 1, test_score * 100.))
  246 + print >> sys.stderr, ('The code for file ' +
  247 + os.path.split(__file__)[1] +
  248 + ' ran for %.2fm' % ((end_time - start_time) / 60.))
  249 +
  250 +
  251 +
  252 +
  253 +
  254 +
  255 +
  256 +
72 257  
73 258  
74 259 def train(self, X, Y):
... ...
mmodel/theano/theanoutil.py
... ... @@ -168,7 +168,7 @@ class ConvPoolLayer(object):
168 168 self.output = T.tanh(pooled_out + self.b.dimshuffle('x', 0, 'x', 'x'))
169 169 self.params = [self.W, self.b]
170 170  
171   -def _shared_dataset(data_xy, borrow=True):
  171 +def shared_dataset(data_xy, borrow=True):
172 172 """ Function that loads the dataset into shared variables
173 173  
174 174 The reason we store our dataset in shared variables is to allow
... ... @@ -208,8 +208,8 @@ def train_cnn_example(X=None, Y=None, dataset=os.path.join(&#39;&#39;, &#39;../../res/&#39;, &#39;il
208 208 else:
209 209 X_train, X_test, Y_train, Y_test = cross_validation.train_test_split(X, Y, test_size=0.2, random_state=0)
210 210  
211   - X_train, Y_train = _shared_dataset((X_train, Y_train))
212   - X_test, Y_test = _shared_dataset((X_test, Y_test))
  211 + X_train, Y_train = shared_dataset((X_train, Y_train))
  212 + X_test, Y_test = shared_dataset((X_test, Y_test))
213 213  
214 214 # X_train = theano.shared(np.asarray(X_train, dtype=theano.config.floatX), borrow=True)
215 215 # Y_train = theano.shared(np.asarray(Y_train, dtype=theano.config.floatX), borrow=True)
... ...
test/test_model.py
... ... @@ -149,6 +149,11 @@ def test_SVM_ILSVRC_S():
149 149 # test_SVM_ILSVRC_SPARK()
150 150  
151 151  
  152 +def test_THEANO_mnist():
  153 + mtheano = THEANO.ModelTHEANO(toolset='cnn')
  154 + mtheano._train_cnn(learning_rate=0.1, n_epochs=200, dataset=os.path.join(package_dir, '../res/', 'mnist.pkl.gz'), nkerns=[20, 50], batch_size=500)
  155 +
  156 +
152 157 def test_THEANO_crop():
153 158 timer.mark()
154 159 dilc = ILSVRC.DataILSVRC(base_dir='/data/hadoop/ImageNet/ILSVRC/ILSVRC2013_DET_val', category='Test_crop_pil')
... ...