Commit 26e2fe9fe66de4396c58244e9e2e8cfb440e3292
1 parent
8cfc1a23
Exists in
master
MPB steganalysis algo half-finished,
Showing
9 changed files
with
292 additions
and
31 deletions
Show diff stats
jpegObj/__init__.py
@@ -31,6 +31,7 @@ colorCode = { | @@ -31,6 +31,7 @@ colorCode = { | ||
31 | } | 31 | } |
32 | 32 | ||
33 | colorParam = ['Y', 'Cb', 'Cr'] | 33 | colorParam = ['Y', 'Cb', 'Cr'] |
34 | +colorMap = {'Y': 0, 'Cb': 1, 'Cr': 2} | ||
34 | 35 | ||
35 | # The JPEG class | 36 | # The JPEG class |
36 | # ============== | 37 | # ============== |
@@ -64,6 +65,7 @@ class Jpeg(Jsteg): | @@ -64,6 +65,7 @@ class Jpeg(Jsteg): | ||
64 | else: | 65 | else: |
65 | self.key = None | 66 | self.key = None |
66 | 67 | ||
68 | + | ||
67 | def getkey(self): | 69 | def getkey(self): |
68 | """Return the key used to shuffle the coefficients.""" | 70 | """Return the key used to shuffle the coefficients.""" |
69 | return self.key | 71 | return self.key |
@@ -380,4 +382,27 @@ class Jpeg(Jsteg): | @@ -380,4 +382,27 @@ class Jpeg(Jsteg): | ||
380 | return S.astype(np.uint8) | 382 | return S.astype(np.uint8) |
381 | 383 | ||
382 | 384 | ||
385 | +def diffblock(c1, c2): | ||
386 | + diff = False | ||
387 | + if np.array_equal(c1, c2): | ||
388 | + print("blocks match") | ||
389 | + else: | ||
390 | + print("blocks not match") | ||
391 | + diff = True | ||
392 | + | ||
393 | + return diff | ||
394 | + | ||
395 | + | ||
396 | +def diffblocks(a, b): | ||
397 | + diff = False | ||
398 | + cnt = 0 | ||
399 | + for comp in range(a.image_components): | ||
400 | + xmax, ymax = a.Jgetcompdim(comp) | ||
401 | + for y in range(ymax): | ||
402 | + for x in range(xmax): | ||
403 | + if a.Jgetblock(x, y, comp) != b.Jgetblock(x, y, comp): | ||
404 | + print("blocks({},{}) in component {} not match".format(y, x, comp)) | ||
405 | + diff = True | ||
406 | + cnt += 1 | ||
407 | + return diff, cnt | ||
383 | 408 |
jpegObj/__init__.pyc
No preview for this file type
msteg/steganalysis/ChiSquare.py
@@ -23,12 +23,10 @@ import matplotlib.pyplot as plt | @@ -23,12 +23,10 @@ import matplotlib.pyplot as plt | ||
23 | import itertools as it | 23 | import itertools as it |
24 | from msteg.StegBase import StegBase | 24 | from msteg.StegBase import StegBase |
25 | 25 | ||
26 | -from stegotool.util.plugins import describe_and_annotate | ||
27 | -from stegotool.util.plugins import ImagePath, NewFilePath | ||
28 | -from stegotool.util.JPEGSteg import JPEGSteg | ||
29 | -from stegotool.util import rw_dct | 26 | +from msteg.StegBase import * |
30 | 27 | ||
31 | -class ChiSquare(JPEGSteg): | 28 | + |
29 | +class ChiSquare(StegBase): | ||
32 | """ | 30 | """ |
33 | The module contains only one method, <b>detect</b>. | 31 | The module contains only one method, <b>detect</b>. |
34 | """ | 32 | """ |
@@ -0,0 +1,208 @@ | @@ -0,0 +1,208 @@ | ||
1 | +__author__ = 'chunk' | ||
2 | +""" | ||
3 | +Yun Q. Shi, et al - A Markov Process Based Approach to Effective Attacking JPEG Steganography | ||
4 | +""" | ||
5 | + | ||
6 | +import time | ||
7 | +import math | ||
8 | +import numpy as np | ||
9 | +from msteg.StegBase import * | ||
10 | +import mjsteg | ||
11 | +import jpegObj | ||
12 | +from common import * | ||
13 | + | ||
14 | +import csv | ||
15 | +import json | ||
16 | +import pickle | ||
17 | +from sklearn import svm | ||
18 | + | ||
19 | +base_dir = '/home/hadoop/data/HeadShoulder/' | ||
20 | + | ||
21 | +class MPB(StegBase): | ||
22 | + """ | ||
23 | + Markov Process Based Steganalyasis Algo. | ||
24 | + """ | ||
25 | + | ||
26 | + def __init__(self): | ||
27 | + StegBase.__init__(self, sample_key) | ||
28 | + | ||
29 | + def get_trans_prob_mat_orig(self, ciq, T=4): | ||
30 | + """ | ||
31 | + Original! | ||
32 | + Calculate Transition Probability Matrix. | ||
33 | + | ||
34 | + :param ciq: jpeg DCT coeff matrix, 2-D numpy array of int16 (pre-abs) | ||
35 | + :param T: signed integer, usually 1~7 | ||
36 | + :return: TPM - 3-D tensor, numpy array of size (2*T+1, 2*T+1, 4) | ||
37 | + """ | ||
38 | + ciq = np.absolute(ciq).clip(0, T) | ||
39 | + TPM = np.zeros((2 * T + 1, 2 * T + 1, 4), np.float64) | ||
40 | + # Fh = np.diff(ciq, axis=-1) | ||
41 | + # Fv = np.diff(ciq, axis=0) | ||
42 | + Fh = ciq[:-1, :-1] - ciq[:-1, 1:] | ||
43 | + Fv = ciq[:-1, :-1] - ciq[1:, :-1] | ||
44 | + Fd = ciq[:-1, :-1] - ciq[1:, 1:] | ||
45 | + Fm = ciq[:-1, 1:] - ciq[1:, :-1] | ||
46 | + | ||
47 | + Fh1 = Fh[:-1, :-1] | ||
48 | + Fh2 = Fh[:-1, 1:] | ||
49 | + | ||
50 | + Fv1 = Fv[:-1, :-1] | ||
51 | + Fv2 = Fv[1:, :-1] | ||
52 | + | ||
53 | + Fd1 = Fd[:-1, :-1] | ||
54 | + Fd2 = Fd[1:, 1:] | ||
55 | + | ||
56 | + Fm1 = Fm[:-1, 1:] | ||
57 | + Fm2 = Fm[1:, :-1] | ||
58 | + | ||
59 | + # original:(very slow!) | ||
60 | + for n in range(-T, T + 1): | ||
61 | + for m in range(-T, T + 1): | ||
62 | + dh = np.sum(Fh1 == m) * 1.0 | ||
63 | + dv = np.sum(Fv1 == m) * 1.0 | ||
64 | + dd = np.sum(Fd1 == m) * 1.0 | ||
65 | + dm = np.sum(Fm1 == m) * 1.0 | ||
66 | + | ||
67 | + if dh != 0: | ||
68 | + TPM[m, n, 0] = np.sum(np.logical_and(Fh1 == m, Fh2 == n)) / dh | ||
69 | + | ||
70 | + if dv != 0: | ||
71 | + TPM[m, n, 1] = np.sum(np.logical_and(Fv1 == m, Fv2 == n)) / dv | ||
72 | + | ||
73 | + if dd != 0: | ||
74 | + TPM[m, n, 2] = np.sum(np.logical_and(Fd1 == m, Fd2 == n)) / dd | ||
75 | + | ||
76 | + if dm != 0: | ||
77 | + TPM[m, n, 3] = np.sum(np.logical_and(Fm1 == m, Fm2 == n)) / dm | ||
78 | + | ||
79 | + # 1.422729s | ||
80 | + return TPM | ||
81 | + | ||
82 | + | ||
83 | + def get_trans_prob_mat(self, ciq, T=4): | ||
84 | + """ | ||
85 | + Calculate Transition Probability Matrix. | ||
86 | + | ||
87 | + :param ciq: jpeg DCT coeff matrix, 2-D numpy array of int16 (pre-abs) | ||
88 | + :param T: signed integer, usually 1~7 | ||
89 | + :return: TPM - 3-D tensor, numpy array of size (2*T+1, 2*T+1, 4) | ||
90 | + """ | ||
91 | + # return self.get_trans_prob_mat_orig(ciq, T) | ||
92 | + # timer = Timer() | ||
93 | + ciq = np.absolute(ciq).clip(0, T) | ||
94 | + TPM = np.zeros((2 * T + 1, 2 * T + 1, 4), np.float64) | ||
95 | + # Fh = np.diff(ciq, axis=-1) | ||
96 | + # Fv = np.diff(ciq, axis=0) | ||
97 | + Fh = ciq[:-1, :-1] - ciq[:-1, 1:] | ||
98 | + Fv = ciq[:-1, :-1] - ciq[1:, :-1] | ||
99 | + Fd = ciq[:-1, :-1] - ciq[1:, 1:] | ||
100 | + Fm = ciq[:-1, 1:] - ciq[1:, :-1] | ||
101 | + | ||
102 | + Fh1 = Fh[:-1, :-1] | ||
103 | + Fh2 = Fh[:-1, 1:] | ||
104 | + | ||
105 | + Fv1 = Fv[:-1, :-1] | ||
106 | + Fv2 = Fv[1:, :-1] | ||
107 | + | ||
108 | + Fd1 = Fd[:-1, :-1] | ||
109 | + Fd2 = Fd[1:, 1:] | ||
110 | + | ||
111 | + Fm1 = Fm[:-1, 1:] | ||
112 | + Fm2 = Fm[1:, :-1] | ||
113 | + | ||
114 | + | ||
115 | + | ||
116 | + # 0.089754s | ||
117 | + # timer.mark() | ||
118 | + # TPM[Fh1.ravel(), Fh2.ravel(), 0] += 1 | ||
119 | + # TPM[Fv1.ravel(), Fv2.ravel(), 1] += 1 | ||
120 | + # TPM[Fd1.ravel(), Fd2.ravel(), 2] += 1 | ||
121 | + # TPM[Fm1.ravel(), Fm2.ravel(), 3] += 1 | ||
122 | + # timer.report() | ||
123 | + | ||
124 | + # 1.936746s | ||
125 | + # timer.mark() | ||
126 | + for m, n in zip(Fh1.ravel(), Fh2.ravel()): | ||
127 | + TPM[m, n, 0] += 1 | ||
128 | + | ||
129 | + for m, n in zip(Fv1.ravel(), Fv2.ravel()): | ||
130 | + TPM[m, n, 1] += 1 | ||
131 | + | ||
132 | + for m, n in zip(Fd1.ravel(), Fd2.ravel()): | ||
133 | + TPM[m, n, 2] += 1 | ||
134 | + | ||
135 | + for m, n in zip(Fm1.ravel(), Fm2.ravel()): | ||
136 | + TPM[m, n, 3] += 1 | ||
137 | + # timer.report() | ||
138 | + | ||
139 | + # 0.057505s | ||
140 | + # timer.mark() | ||
141 | + for m in range(-T, T + 1): | ||
142 | + dh = np.sum(Fh1 == m) * 1.0 | ||
143 | + dv = np.sum(Fv1 == m) * 1.0 | ||
144 | + dd = np.sum(Fd1 == m) * 1.0 | ||
145 | + dm = np.sum(Fm1 == m) * 1.0 | ||
146 | + | ||
147 | + if dh != 0: | ||
148 | + TPM[m, :, 0] /= dh | ||
149 | + | ||
150 | + if dv != 0: | ||
151 | + TPM[m, :, 1] /= dv | ||
152 | + | ||
153 | + if dd != 0: | ||
154 | + TPM[m, :, 2] /= dd | ||
155 | + | ||
156 | + if dm != 0: | ||
157 | + TPM[m, :, 3] /= dm | ||
158 | + # timer.report() | ||
159 | + | ||
160 | + return TPM | ||
161 | + | ||
162 | + def _load_dataset(self,list_file): | ||
163 | + """ | ||
164 | + load jpeg dataset according to a file of file-list. | ||
165 | + | ||
166 | + :param list_file: a tsv file with each line for a jpeg file path | ||
167 | + :return:(X,Y) for SVM | ||
168 | + """ | ||
169 | + X = [] | ||
170 | + Y = [] | ||
171 | + dict_tagbuf = {} | ||
172 | + dict_dataset = {} | ||
173 | + | ||
174 | + with open(list_file, 'rb') as tsvfile: | ||
175 | + tsvfile = csv.reader(tsvfile, delimiter='\t') | ||
176 | + for line in tsvfile: | ||
177 | + imgname = line[0] + '.jpg' | ||
178 | + dict_tagbuf[imgname] = line[1] | ||
179 | + | ||
180 | + dir = base_dir + 'Feat/' | ||
181 | + for path, subdirs, files in os.walk(dir + 'Train/'): | ||
182 | + for name in files: | ||
183 | + featpath = os.path.join(path, name) | ||
184 | + # print featpath | ||
185 | + with open(featpath, 'rb') as featfile: | ||
186 | + imgname = path.split('/')[-1] + name.replace('.mpb', '.jpg') | ||
187 | + dict_dataset[imgname] = json.loads(featfile.read()) | ||
188 | + | ||
189 | + for imgname, tag in dict_tagbuf.items(): | ||
190 | + tag = 1 if tag == 'True' else 0 | ||
191 | + X.append(dict_dataset[imgname]) | ||
192 | + Y.append(tag) | ||
193 | + | ||
194 | + return X, Y | ||
195 | + | ||
196 | + | ||
197 | + | ||
198 | + | ||
199 | + | ||
200 | + | ||
201 | + | ||
202 | + | ||
203 | + | ||
204 | + | ||
205 | + | ||
206 | + | ||
207 | + | ||
208 | + |
No preview for this file type
msteg/steganography/F5.py
1 | __author__ = 'chunk' | 1 | __author__ = 'chunk' |
2 | 2 | ||
3 | """ | 3 | """ |
4 | +ref - http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.115.3651&rep=rep1&type=pdf | ||
5 | + | ||
4 | <p>This module implements the rather sophisticated F5 algorithm which was | 6 | <p>This module implements the rather sophisticated F5 algorithm which was |
5 | invented by Andreas Westfeld.</p> | 7 | invented by Andreas Westfeld.</p> |
6 | 8 |
msteg/steganography/F5.pyc
No preview for this file type
test_jpeg.py
@@ -4,6 +4,7 @@ import numpy as np | @@ -4,6 +4,7 @@ import numpy as np | ||
4 | import mjsteg | 4 | import mjsteg |
5 | import jpegObj | 5 | import jpegObj |
6 | from jpegObj import base | 6 | from jpegObj import base |
7 | + | ||
7 | from common import * | 8 | from common import * |
8 | 9 | ||
9 | timer = Timer() | 10 | timer = Timer() |
@@ -21,30 +22,8 @@ sample_key = [46812L, 20559L, 31360L, 16681L, 27536L, 39553L, 5427L, 63029L, 565 | @@ -21,30 +22,8 @@ sample_key = [46812L, 20559L, 31360L, 16681L, 27536L, 39553L, 5427L, 63029L, 565 | ||
21 | 5908L, 59816L, 56765L] | 22 | 5908L, 59816L, 56765L] |
22 | 23 | ||
23 | 24 | ||
24 | -def diffblock(c1, c2): | ||
25 | - diff = False | ||
26 | - if np.array_equal(c1, c2): | ||
27 | - print("blocks match") | ||
28 | - else: | ||
29 | - print("blocks not match") | ||
30 | - diff = True | ||
31 | - | ||
32 | - return diff | ||
33 | 25 | ||
34 | 26 | ||
35 | -def diffblocks(a, b): | ||
36 | - diff = False | ||
37 | - cnt = 0 | ||
38 | - for comp in range(a.image_components): | ||
39 | - xmax, ymax = a.Jgetcompdim(comp) | ||
40 | - for y in range(ymax): | ||
41 | - for x in range(xmax): | ||
42 | - if a.Jgetblock(x, y, comp) != b.Jgetblock(x, y, comp): | ||
43 | - print("blocks({},{}) in component {} not match".format(y, x, comp)) | ||
44 | - diff = True | ||
45 | - cnt += 1 | ||
46 | - return diff, cnt | ||
47 | - | ||
48 | 27 | ||
49 | def test_setblocks(): | 28 | def test_setblocks(): |
50 | """ | 29 | """ |
@@ -63,7 +42,7 @@ def test_setblocks(): | @@ -63,7 +42,7 @@ def test_setblocks(): | ||
63 | 42 | ||
64 | ima = jpegObj.Jpeg("res/test3.jpg") | 43 | ima = jpegObj.Jpeg("res/test3.jpg") |
65 | imb = jpegObj.Jpeg("res/test4.jpg") | 44 | imb = jpegObj.Jpeg("res/test4.jpg") |
66 | - diffblocks(ima, imb) | 45 | + jpegObj.diffblocks(ima, imb) |
67 | 46 | ||
68 | 47 | ||
69 | def test_setblocks2(): | 48 | def test_setblocks2(): |
@@ -88,7 +67,7 @@ def test_setblocks2(): | @@ -88,7 +67,7 @@ def test_setblocks2(): | ||
88 | 67 | ||
89 | ima = jpegObj.Jpeg("res/test3.jpg") | 68 | ima = jpegObj.Jpeg("res/test3.jpg") |
90 | imb = jpegObj.Jpeg("res/test4.jpg") | 69 | imb = jpegObj.Jpeg("res/test4.jpg") |
91 | - diffblocks(ima, imb) | 70 | + jpegObj.diffblocks(ima, imb) |
92 | 71 | ||
93 | 72 | ||
94 | def test_setblock(): | 73 | def test_setblock(): |
@@ -106,7 +85,7 @@ def test_setblock(): | @@ -106,7 +85,7 @@ def test_setblock(): | ||
106 | blocks2 = imb.Jgetblock(1, 0, 0) | 85 | blocks2 = imb.Jgetblock(1, 0, 0) |
107 | block_to_show = np.frombuffer(blocks2, dtype=np.int16, count=-1, offset=0).reshape(8, 8) | 86 | block_to_show = np.frombuffer(blocks2, dtype=np.int16, count=-1, offset=0).reshape(8, 8) |
108 | print block_to_show | 87 | print block_to_show |
109 | - diffblock(blocks1, block_to_show) | 88 | + jpegObj.diffblock(blocks1, block_to_show) |
110 | 89 | ||
111 | 90 | ||
112 | def test_split(): | 91 | def test_split(): |
@@ -197,7 +176,7 @@ if __name__ == '__main__': | @@ -197,7 +176,7 @@ if __name__ == '__main__': | ||
197 | imc = jpegObj.Jpeg("res/steged.jpg", key=sample_key) | 176 | imc = jpegObj.Jpeg("res/steged.jpg", key=sample_key) |
198 | print ima.Jgetcompdim(0) | 177 | print ima.Jgetcompdim(0) |
199 | print ima.getkey(), imc.getkey() | 178 | print ima.getkey(), imc.getkey() |
200 | - print diffblocks(ima, imc) | 179 | + print jpegObj.diffblocks(ima, imc) |
201 | 180 | ||
202 | # c1 = ima.getCoefBlocks() | 181 | # c1 = ima.getCoefBlocks() |
203 | # c2 = imb.getCoefBlocks() | 182 | # c2 = imb.getCoefBlocks() |
@@ -0,0 +1,49 @@ | @@ -0,0 +1,49 @@ | ||
1 | +__author__ = 'chunk' | ||
2 | + | ||
3 | +import numpy as np | ||
4 | +import pylab as P | ||
5 | +import pylab as plt | ||
6 | + | ||
7 | +import mjpeg | ||
8 | +import mjsteg | ||
9 | +import jpegObj | ||
10 | +from msteg.steganography import LSB, F3, F4, F5 | ||
11 | +from msteg.steganalysis import MPB | ||
12 | + | ||
13 | +from common import * | ||
14 | + | ||
15 | + | ||
16 | +timer = Timer() | ||
17 | + | ||
18 | +sample = [[7, 12, 14, -12, 1, 0, -1, 0], | ||
19 | + [6, 5, -10, 0, 6, 0, 0, 0], | ||
20 | + [0, 6, -5, 4, 0, -1, 0, 0], | ||
21 | + [0, -3, 0, 1, -1, 0, 0, 0], | ||
22 | + [-3, 5, 0, 0, 0, 0, 0, 0], | ||
23 | + [2, -1, 0, 0, 0, 0, 0, 0], | ||
24 | + [0, 0, 0, 0, 0, 0, 0, 0], | ||
25 | + [0, 0, 0, 0, 0, 0, 0, 0]] | ||
26 | + | ||
27 | +sample_key = [46812L, 20559L, 31360L, 16681L, 27536L, 39553L, 5427L, 63029L, 56572L, 36476L, 25695L, 61908L, 63014L, | ||
28 | + 5908L, 59816L, 56765L] | ||
29 | + | ||
30 | +txtsample = [116, 104, 105, 115, 32, 105, 115, 32, 116, 111, 32, 98, 101, 32, 101, 109, 98, 101, 100, 101, 100, 46, 10] | ||
31 | + | ||
32 | +if __name__ == '__main__': | ||
33 | + timer = Timer() | ||
34 | + | ||
35 | + timer.mark() | ||
36 | + ima = jpegObj.Jpeg("res/test3.jpg", key=sample_key) | ||
37 | + timer.report() # 0.006490s | ||
38 | + | ||
39 | + ciq = ima.coef_arrays[jpegObj.colorMap['Y']] | ||
40 | + timer.report() # 0.000019s | ||
41 | + | ||
42 | + mpbSteg = MPB.MPB() | ||
43 | + tpm = mpbSteg.get_trans_prob_mat(ciq) | ||
44 | + timer.report() # 1.365718s | ||
45 | + | ||
46 | + print tpm, tpm.shape | ||
47 | + pass | ||
48 | + | ||
49 | + |