Commit 26e2fe9fe66de4396c58244e9e2e8cfb440e3292
1 parent
8cfc1a23
Exists in
master
MPB steganalysis algo half-finished,
Showing
9 changed files
with
292 additions
and
31 deletions
Show diff stats
jpegObj/__init__.py
| ... | ... | @@ -31,6 +31,7 @@ colorCode = { |
| 31 | 31 | } |
| 32 | 32 | |
| 33 | 33 | colorParam = ['Y', 'Cb', 'Cr'] |
| 34 | +colorMap = {'Y': 0, 'Cb': 1, 'Cr': 2} | |
| 34 | 35 | |
| 35 | 36 | # The JPEG class |
| 36 | 37 | # ============== |
| ... | ... | @@ -64,6 +65,7 @@ class Jpeg(Jsteg): |
| 64 | 65 | else: |
| 65 | 66 | self.key = None |
| 66 | 67 | |
| 68 | + | |
| 67 | 69 | def getkey(self): |
| 68 | 70 | """Return the key used to shuffle the coefficients.""" |
| 69 | 71 | return self.key |
| ... | ... | @@ -380,4 +382,27 @@ class Jpeg(Jsteg): |
| 380 | 382 | return S.astype(np.uint8) |
| 381 | 383 | |
| 382 | 384 | |
| 385 | +def diffblock(c1, c2): | |
| 386 | + diff = False | |
| 387 | + if np.array_equal(c1, c2): | |
| 388 | + print("blocks match") | |
| 389 | + else: | |
| 390 | + print("blocks not match") | |
| 391 | + diff = True | |
| 392 | + | |
| 393 | + return diff | |
| 394 | + | |
| 395 | + | |
| 396 | +def diffblocks(a, b): | |
| 397 | + diff = False | |
| 398 | + cnt = 0 | |
| 399 | + for comp in range(a.image_components): | |
| 400 | + xmax, ymax = a.Jgetcompdim(comp) | |
| 401 | + for y in range(ymax): | |
| 402 | + for x in range(xmax): | |
| 403 | + if a.Jgetblock(x, y, comp) != b.Jgetblock(x, y, comp): | |
| 404 | + print("blocks({},{}) in component {} not match".format(y, x, comp)) | |
| 405 | + diff = True | |
| 406 | + cnt += 1 | |
| 407 | + return diff, cnt | |
| 383 | 408 | ... | ... |
jpegObj/__init__.pyc
No preview for this file type
msteg/steganalysis/ChiSquare.py
| ... | ... | @@ -23,12 +23,10 @@ import matplotlib.pyplot as plt |
| 23 | 23 | import itertools as it |
| 24 | 24 | from msteg.StegBase import StegBase |
| 25 | 25 | |
| 26 | -from stegotool.util.plugins import describe_and_annotate | |
| 27 | -from stegotool.util.plugins import ImagePath, NewFilePath | |
| 28 | -from stegotool.util.JPEGSteg import JPEGSteg | |
| 29 | -from stegotool.util import rw_dct | |
| 26 | +from msteg.StegBase import * | |
| 30 | 27 | |
| 31 | -class ChiSquare(JPEGSteg): | |
| 28 | + | |
| 29 | +class ChiSquare(StegBase): | |
| 32 | 30 | """ |
| 33 | 31 | The module contains only one method, <b>detect</b>. |
| 34 | 32 | """ | ... | ... |
| ... | ... | @@ -0,0 +1,208 @@ |
| 1 | +__author__ = 'chunk' | |
| 2 | +""" | |
| 3 | +Yun Q. Shi, et al - A Markov Process Based Approach to Effective Attacking JPEG Steganography | |
| 4 | +""" | |
| 5 | + | |
| 6 | +import time | |
| 7 | +import math | |
| 8 | +import numpy as np | |
| 9 | +from msteg.StegBase import * | |
| 10 | +import mjsteg | |
| 11 | +import jpegObj | |
| 12 | +from common import * | |
| 13 | + | |
| 14 | +import csv | |
| 15 | +import json | |
| 16 | +import pickle | |
| 17 | +from sklearn import svm | |
| 18 | + | |
| 19 | +base_dir = '/home/hadoop/data/HeadShoulder/' | |
| 20 | + | |
| 21 | +class MPB(StegBase): | |
| 22 | + """ | |
| 23 | + Markov Process Based Steganalyasis Algo. | |
| 24 | + """ | |
| 25 | + | |
| 26 | + def __init__(self): | |
| 27 | + StegBase.__init__(self, sample_key) | |
| 28 | + | |
| 29 | + def get_trans_prob_mat_orig(self, ciq, T=4): | |
| 30 | + """ | |
| 31 | + Original! | |
| 32 | + Calculate Transition Probability Matrix. | |
| 33 | + | |
| 34 | + :param ciq: jpeg DCT coeff matrix, 2-D numpy array of int16 (pre-abs) | |
| 35 | + :param T: signed integer, usually 1~7 | |
| 36 | + :return: TPM - 3-D tensor, numpy array of size (2*T+1, 2*T+1, 4) | |
| 37 | + """ | |
| 38 | + ciq = np.absolute(ciq).clip(0, T) | |
| 39 | + TPM = np.zeros((2 * T + 1, 2 * T + 1, 4), np.float64) | |
| 40 | + # Fh = np.diff(ciq, axis=-1) | |
| 41 | + # Fv = np.diff(ciq, axis=0) | |
| 42 | + Fh = ciq[:-1, :-1] - ciq[:-1, 1:] | |
| 43 | + Fv = ciq[:-1, :-1] - ciq[1:, :-1] | |
| 44 | + Fd = ciq[:-1, :-1] - ciq[1:, 1:] | |
| 45 | + Fm = ciq[:-1, 1:] - ciq[1:, :-1] | |
| 46 | + | |
| 47 | + Fh1 = Fh[:-1, :-1] | |
| 48 | + Fh2 = Fh[:-1, 1:] | |
| 49 | + | |
| 50 | + Fv1 = Fv[:-1, :-1] | |
| 51 | + Fv2 = Fv[1:, :-1] | |
| 52 | + | |
| 53 | + Fd1 = Fd[:-1, :-1] | |
| 54 | + Fd2 = Fd[1:, 1:] | |
| 55 | + | |
| 56 | + Fm1 = Fm[:-1, 1:] | |
| 57 | + Fm2 = Fm[1:, :-1] | |
| 58 | + | |
| 59 | + # original:(very slow!) | |
| 60 | + for n in range(-T, T + 1): | |
| 61 | + for m in range(-T, T + 1): | |
| 62 | + dh = np.sum(Fh1 == m) * 1.0 | |
| 63 | + dv = np.sum(Fv1 == m) * 1.0 | |
| 64 | + dd = np.sum(Fd1 == m) * 1.0 | |
| 65 | + dm = np.sum(Fm1 == m) * 1.0 | |
| 66 | + | |
| 67 | + if dh != 0: | |
| 68 | + TPM[m, n, 0] = np.sum(np.logical_and(Fh1 == m, Fh2 == n)) / dh | |
| 69 | + | |
| 70 | + if dv != 0: | |
| 71 | + TPM[m, n, 1] = np.sum(np.logical_and(Fv1 == m, Fv2 == n)) / dv | |
| 72 | + | |
| 73 | + if dd != 0: | |
| 74 | + TPM[m, n, 2] = np.sum(np.logical_and(Fd1 == m, Fd2 == n)) / dd | |
| 75 | + | |
| 76 | + if dm != 0: | |
| 77 | + TPM[m, n, 3] = np.sum(np.logical_and(Fm1 == m, Fm2 == n)) / dm | |
| 78 | + | |
| 79 | + # 1.422729s | |
| 80 | + return TPM | |
| 81 | + | |
| 82 | + | |
| 83 | + def get_trans_prob_mat(self, ciq, T=4): | |
| 84 | + """ | |
| 85 | + Calculate Transition Probability Matrix. | |
| 86 | + | |
| 87 | + :param ciq: jpeg DCT coeff matrix, 2-D numpy array of int16 (pre-abs) | |
| 88 | + :param T: signed integer, usually 1~7 | |
| 89 | + :return: TPM - 3-D tensor, numpy array of size (2*T+1, 2*T+1, 4) | |
| 90 | + """ | |
| 91 | + # return self.get_trans_prob_mat_orig(ciq, T) | |
| 92 | + # timer = Timer() | |
| 93 | + ciq = np.absolute(ciq).clip(0, T) | |
| 94 | + TPM = np.zeros((2 * T + 1, 2 * T + 1, 4), np.float64) | |
| 95 | + # Fh = np.diff(ciq, axis=-1) | |
| 96 | + # Fv = np.diff(ciq, axis=0) | |
| 97 | + Fh = ciq[:-1, :-1] - ciq[:-1, 1:] | |
| 98 | + Fv = ciq[:-1, :-1] - ciq[1:, :-1] | |
| 99 | + Fd = ciq[:-1, :-1] - ciq[1:, 1:] | |
| 100 | + Fm = ciq[:-1, 1:] - ciq[1:, :-1] | |
| 101 | + | |
| 102 | + Fh1 = Fh[:-1, :-1] | |
| 103 | + Fh2 = Fh[:-1, 1:] | |
| 104 | + | |
| 105 | + Fv1 = Fv[:-1, :-1] | |
| 106 | + Fv2 = Fv[1:, :-1] | |
| 107 | + | |
| 108 | + Fd1 = Fd[:-1, :-1] | |
| 109 | + Fd2 = Fd[1:, 1:] | |
| 110 | + | |
| 111 | + Fm1 = Fm[:-1, 1:] | |
| 112 | + Fm2 = Fm[1:, :-1] | |
| 113 | + | |
| 114 | + | |
| 115 | + | |
| 116 | + # 0.089754s | |
| 117 | + # timer.mark() | |
| 118 | + # TPM[Fh1.ravel(), Fh2.ravel(), 0] += 1 | |
| 119 | + # TPM[Fv1.ravel(), Fv2.ravel(), 1] += 1 | |
| 120 | + # TPM[Fd1.ravel(), Fd2.ravel(), 2] += 1 | |
| 121 | + # TPM[Fm1.ravel(), Fm2.ravel(), 3] += 1 | |
| 122 | + # timer.report() | |
| 123 | + | |
| 124 | + # 1.936746s | |
| 125 | + # timer.mark() | |
| 126 | + for m, n in zip(Fh1.ravel(), Fh2.ravel()): | |
| 127 | + TPM[m, n, 0] += 1 | |
| 128 | + | |
| 129 | + for m, n in zip(Fv1.ravel(), Fv2.ravel()): | |
| 130 | + TPM[m, n, 1] += 1 | |
| 131 | + | |
| 132 | + for m, n in zip(Fd1.ravel(), Fd2.ravel()): | |
| 133 | + TPM[m, n, 2] += 1 | |
| 134 | + | |
| 135 | + for m, n in zip(Fm1.ravel(), Fm2.ravel()): | |
| 136 | + TPM[m, n, 3] += 1 | |
| 137 | + # timer.report() | |
| 138 | + | |
| 139 | + # 0.057505s | |
| 140 | + # timer.mark() | |
| 141 | + for m in range(-T, T + 1): | |
| 142 | + dh = np.sum(Fh1 == m) * 1.0 | |
| 143 | + dv = np.sum(Fv1 == m) * 1.0 | |
| 144 | + dd = np.sum(Fd1 == m) * 1.0 | |
| 145 | + dm = np.sum(Fm1 == m) * 1.0 | |
| 146 | + | |
| 147 | + if dh != 0: | |
| 148 | + TPM[m, :, 0] /= dh | |
| 149 | + | |
| 150 | + if dv != 0: | |
| 151 | + TPM[m, :, 1] /= dv | |
| 152 | + | |
| 153 | + if dd != 0: | |
| 154 | + TPM[m, :, 2] /= dd | |
| 155 | + | |
| 156 | + if dm != 0: | |
| 157 | + TPM[m, :, 3] /= dm | |
| 158 | + # timer.report() | |
| 159 | + | |
| 160 | + return TPM | |
| 161 | + | |
| 162 | + def _load_dataset(self,list_file): | |
| 163 | + """ | |
| 164 | + load jpeg dataset according to a file of file-list. | |
| 165 | + | |
| 166 | + :param list_file: a tsv file with each line for a jpeg file path | |
| 167 | + :return:(X,Y) for SVM | |
| 168 | + """ | |
| 169 | + X = [] | |
| 170 | + Y = [] | |
| 171 | + dict_tagbuf = {} | |
| 172 | + dict_dataset = {} | |
| 173 | + | |
| 174 | + with open(list_file, 'rb') as tsvfile: | |
| 175 | + tsvfile = csv.reader(tsvfile, delimiter='\t') | |
| 176 | + for line in tsvfile: | |
| 177 | + imgname = line[0] + '.jpg' | |
| 178 | + dict_tagbuf[imgname] = line[1] | |
| 179 | + | |
| 180 | + dir = base_dir + 'Feat/' | |
| 181 | + for path, subdirs, files in os.walk(dir + 'Train/'): | |
| 182 | + for name in files: | |
| 183 | + featpath = os.path.join(path, name) | |
| 184 | + # print featpath | |
| 185 | + with open(featpath, 'rb') as featfile: | |
| 186 | + imgname = path.split('/')[-1] + name.replace('.mpb', '.jpg') | |
| 187 | + dict_dataset[imgname] = json.loads(featfile.read()) | |
| 188 | + | |
| 189 | + for imgname, tag in dict_tagbuf.items(): | |
| 190 | + tag = 1 if tag == 'True' else 0 | |
| 191 | + X.append(dict_dataset[imgname]) | |
| 192 | + Y.append(tag) | |
| 193 | + | |
| 194 | + return X, Y | |
| 195 | + | |
| 196 | + | |
| 197 | + | |
| 198 | + | |
| 199 | + | |
| 200 | + | |
| 201 | + | |
| 202 | + | |
| 203 | + | |
| 204 | + | |
| 205 | + | |
| 206 | + | |
| 207 | + | |
| 208 | + | ... | ... |
No preview for this file type
msteg/steganography/F5.py
msteg/steganography/F5.pyc
No preview for this file type
test_jpeg.py
| ... | ... | @@ -4,6 +4,7 @@ import numpy as np |
| 4 | 4 | import mjsteg |
| 5 | 5 | import jpegObj |
| 6 | 6 | from jpegObj import base |
| 7 | + | |
| 7 | 8 | from common import * |
| 8 | 9 | |
| 9 | 10 | timer = Timer() |
| ... | ... | @@ -21,30 +22,8 @@ sample_key = [46812L, 20559L, 31360L, 16681L, 27536L, 39553L, 5427L, 63029L, 565 |
| 21 | 22 | 5908L, 59816L, 56765L] |
| 22 | 23 | |
| 23 | 24 | |
| 24 | -def diffblock(c1, c2): | |
| 25 | - diff = False | |
| 26 | - if np.array_equal(c1, c2): | |
| 27 | - print("blocks match") | |
| 28 | - else: | |
| 29 | - print("blocks not match") | |
| 30 | - diff = True | |
| 31 | - | |
| 32 | - return diff | |
| 33 | 25 | |
| 34 | 26 | |
| 35 | -def diffblocks(a, b): | |
| 36 | - diff = False | |
| 37 | - cnt = 0 | |
| 38 | - for comp in range(a.image_components): | |
| 39 | - xmax, ymax = a.Jgetcompdim(comp) | |
| 40 | - for y in range(ymax): | |
| 41 | - for x in range(xmax): | |
| 42 | - if a.Jgetblock(x, y, comp) != b.Jgetblock(x, y, comp): | |
| 43 | - print("blocks({},{}) in component {} not match".format(y, x, comp)) | |
| 44 | - diff = True | |
| 45 | - cnt += 1 | |
| 46 | - return diff, cnt | |
| 47 | - | |
| 48 | 27 | |
| 49 | 28 | def test_setblocks(): |
| 50 | 29 | """ |
| ... | ... | @@ -63,7 +42,7 @@ def test_setblocks(): |
| 63 | 42 | |
| 64 | 43 | ima = jpegObj.Jpeg("res/test3.jpg") |
| 65 | 44 | imb = jpegObj.Jpeg("res/test4.jpg") |
| 66 | - diffblocks(ima, imb) | |
| 45 | + jpegObj.diffblocks(ima, imb) | |
| 67 | 46 | |
| 68 | 47 | |
| 69 | 48 | def test_setblocks2(): |
| ... | ... | @@ -88,7 +67,7 @@ def test_setblocks2(): |
| 88 | 67 | |
| 89 | 68 | ima = jpegObj.Jpeg("res/test3.jpg") |
| 90 | 69 | imb = jpegObj.Jpeg("res/test4.jpg") |
| 91 | - diffblocks(ima, imb) | |
| 70 | + jpegObj.diffblocks(ima, imb) | |
| 92 | 71 | |
| 93 | 72 | |
| 94 | 73 | def test_setblock(): |
| ... | ... | @@ -106,7 +85,7 @@ def test_setblock(): |
| 106 | 85 | blocks2 = imb.Jgetblock(1, 0, 0) |
| 107 | 86 | block_to_show = np.frombuffer(blocks2, dtype=np.int16, count=-1, offset=0).reshape(8, 8) |
| 108 | 87 | print block_to_show |
| 109 | - diffblock(blocks1, block_to_show) | |
| 88 | + jpegObj.diffblock(blocks1, block_to_show) | |
| 110 | 89 | |
| 111 | 90 | |
| 112 | 91 | def test_split(): |
| ... | ... | @@ -197,7 +176,7 @@ if __name__ == '__main__': |
| 197 | 176 | imc = jpegObj.Jpeg("res/steged.jpg", key=sample_key) |
| 198 | 177 | print ima.Jgetcompdim(0) |
| 199 | 178 | print ima.getkey(), imc.getkey() |
| 200 | - print diffblocks(ima, imc) | |
| 179 | + print jpegObj.diffblocks(ima, imc) | |
| 201 | 180 | |
| 202 | 181 | # c1 = ima.getCoefBlocks() |
| 203 | 182 | # c2 = imb.getCoefBlocks() | ... | ... |
| ... | ... | @@ -0,0 +1,49 @@ |
| 1 | +__author__ = 'chunk' | |
| 2 | + | |
| 3 | +import numpy as np | |
| 4 | +import pylab as P | |
| 5 | +import pylab as plt | |
| 6 | + | |
| 7 | +import mjpeg | |
| 8 | +import mjsteg | |
| 9 | +import jpegObj | |
| 10 | +from msteg.steganography import LSB, F3, F4, F5 | |
| 11 | +from msteg.steganalysis import MPB | |
| 12 | + | |
| 13 | +from common import * | |
| 14 | + | |
| 15 | + | |
| 16 | +timer = Timer() | |
| 17 | + | |
| 18 | +sample = [[7, 12, 14, -12, 1, 0, -1, 0], | |
| 19 | + [6, 5, -10, 0, 6, 0, 0, 0], | |
| 20 | + [0, 6, -5, 4, 0, -1, 0, 0], | |
| 21 | + [0, -3, 0, 1, -1, 0, 0, 0], | |
| 22 | + [-3, 5, 0, 0, 0, 0, 0, 0], | |
| 23 | + [2, -1, 0, 0, 0, 0, 0, 0], | |
| 24 | + [0, 0, 0, 0, 0, 0, 0, 0], | |
| 25 | + [0, 0, 0, 0, 0, 0, 0, 0]] | |
| 26 | + | |
| 27 | +sample_key = [46812L, 20559L, 31360L, 16681L, 27536L, 39553L, 5427L, 63029L, 56572L, 36476L, 25695L, 61908L, 63014L, | |
| 28 | + 5908L, 59816L, 56765L] | |
| 29 | + | |
| 30 | +txtsample = [116, 104, 105, 115, 32, 105, 115, 32, 116, 111, 32, 98, 101, 32, 101, 109, 98, 101, 100, 101, 100, 46, 10] | |
| 31 | + | |
| 32 | +if __name__ == '__main__': | |
| 33 | + timer = Timer() | |
| 34 | + | |
| 35 | + timer.mark() | |
| 36 | + ima = jpegObj.Jpeg("res/test3.jpg", key=sample_key) | |
| 37 | + timer.report() # 0.006490s | |
| 38 | + | |
| 39 | + ciq = ima.coef_arrays[jpegObj.colorMap['Y']] | |
| 40 | + timer.report() # 0.000019s | |
| 41 | + | |
| 42 | + mpbSteg = MPB.MPB() | |
| 43 | + tpm = mpbSteg.get_trans_prob_mat(ciq) | |
| 44 | + timer.report() # 1.365718s | |
| 45 | + | |
| 46 | + print tpm, tpm.shape | |
| 47 | + pass | |
| 48 | + | |
| 49 | + | ... | ... |