Commit 3ef6ddf1034ad7bb6f5715622ca9c231af3f3084
1 parent
b2b2636c
Exists in
master
and in
1 other branch
staged.
Showing
2 changed files
with
222 additions
and
182 deletions
 
Show diff stats
mmodel/theano/THEANO.py
| ... | ... | @@ -30,6 +30,7 @@ class ModelTHEANO(ModelBase): | 
| 30 | 30 | |
| 31 | 31 | |
| 32 | 32 | """ | 
| 33 | + | |
| 33 | 34 | def __init__(self, toolset='cnn', sc=None): | 
| 34 | 35 | ModelBase.__init__(self) | 
| 35 | 36 | self.toolset = toolset | 
| ... | ... | @@ -66,188 +67,8 @@ class ModelTHEANO(ModelBase): | 
| 66 | 67 | nkerns=[20, 50, 50], | 
| 67 | 68 | batch_size=400): | 
| 68 | 69 | |
| 69 | - if X == None: | |
| 70 | - assert dataset != None | |
| 71 | - with open(dataset, 'rb') as f: | |
| 72 | - train_set, test_set = cPickle.load(f) | |
| 73 | - | |
| 74 | - X_train, Y_train = train_set | |
| 75 | - X_test, Y_test = test_set | |
| 76 | - else: | |
| 77 | - X_train, X_test, Y_train, Y_test = cross_validation.train_test_split(X, Y, test_size=0.2, random_state=0) | |
| 78 | - | |
| 79 | - X_train, Y_train = self._shared_dataset((X_train, Y_train)) | |
| 80 | - X_test, Y_test = self._shared_dataset((X_test, Y_test)) | |
| 81 | - | |
| 82 | - # X_train = theano.shared(np.asarray(X_train, dtype=theano.config.floatX), borrow=True) | |
| 83 | - # Y_train = theano.shared(np.asarray(Y_train, dtype=theano.config.floatX), borrow=True) | |
| 84 | - # X_test = theano.shared(np.asarray(X_test, dtype=theano.config.floatX), borrow=True) | |
| 85 | - # Y_test = theano.shared(np.asarray(Y_test, dtype=theano.config.floatX), borrow=True) | |
| 86 | - | |
| 87 | - n_train_batches = X_train.get_value(borrow=True).shape[0] / batch_size | |
| 88 | - n_test_batches = X_test.get_value(borrow=True).shape[0] / batch_size | |
| 89 | - | |
| 90 | - print X_train.get_value(borrow=True).shape, Y_train.shape | |
| 91 | - | |
| 92 | - rng = np.random.RandomState(12306) | |
| 93 | - index = T.lscalar() | |
| 94 | - x = T.matrix('x') | |
| 95 | - y = T.ivector('y') | |
| 96 | - | |
| 97 | - ###################### | |
| 98 | - # BUILD ACTUAL MODEL # | |
| 99 | - ###################### | |
| 100 | - print '... building the model' | |
| 101 | - | |
| 102 | - layer0_input = x.reshape((batch_size, 1, 304, 304)) | |
| 103 | - | |
| 104 | - # Construct the first convolutional pooling layer: | |
| 105 | - # filtering reduces the image size to (304-8+1 , 304-8+1) = (297, 297) | |
| 106 | - # maxpooling reduces this further to (297/4, 297/4) = (74, 74) | |
| 107 | - # 4D output tensor is thus of shape (batch_size, nkerns[0], 74, 74) | |
| 108 | - layer0 = ConvPoolLayer( | |
| 109 | - rng, | |
| 110 | - input=layer0_input, | |
| 111 | - image_shape=(batch_size, 1, 304, 304), | |
| 112 | - filter_shape=(nkerns[0], 1, 8, 8), | |
| 113 | - poolsize=(4, 4) | |
| 114 | - ) | |
| 115 | - | |
| 116 | - # Construct the second convolutional pooling layer | |
| 117 | - # filtering reduces the image size to (74-8+1, 74-8+1) = (67, 67) | |
| 118 | - # maxpooling reduces this further to (67/4, 67/4) = (16, 16) | |
| 119 | - # 4D output tensor is thus of shape (batch_size, nkerns[1], 16, 16) | |
| 120 | - layer1 = ConvPoolLayer( | |
| 121 | - rng, | |
| 122 | - input=layer0.output, | |
| 123 | - image_shape=(batch_size, nkerns[0], 74, 74), | |
| 124 | - filter_shape=(nkerns[1], nkerns[0], 8, 8), | |
| 125 | - poolsize=(4, 4) | |
| 126 | - ) | |
| 127 | - | |
| 128 | - # Construct the third convolutional pooling layer | |
| 129 | - # filtering reduces the image size to (16-5+1, 16-5+1) = (12, 12) | |
| 130 | - # maxpooling reduces this further to (12/3, 12/3) = (4, 4) | |
| 131 | - # 4D output tensor is thus of shape (batch_size, nkerns[2], 4, 4) | |
| 132 | - layer2 = ConvPoolLayer( | |
| 133 | - rng, | |
| 134 | - input=layer1.output, | |
| 135 | - image_shape=(batch_size, nkerns[1], 16, 16), | |
| 136 | - filter_shape=(nkerns[2], nkerns[1], 5, 5), | |
| 137 | - poolsize=(3, 3) | |
| 138 | - ) | |
| 139 | - | |
| 140 | - # the HiddenLayer being fully-connected, it operates on 2D matrices of | |
| 141 | - # shape (batch_size, num_pixels) (i.e matrix of rasterized images). | |
| 142 | - # This will generate a matrix of shape (batch_size, nkerns[2] * 4 * 4), | |
| 143 | - # or (500, 50 * 4 * 4) = (500, 800) with the default values. | |
| 144 | - layer3_input = layer2.output.flatten(2) | |
| 145 | - # construct a fully-connected sigmoidal layer | |
| 146 | - layer3 = HiddenLayer( | |
| 147 | - rng, | |
| 148 | - input=layer3_input, | |
| 149 | - n_in=nkerns[2] * 4 * 4, | |
| 150 | - n_out=500, | |
| 151 | - activation=T.tanh | |
| 152 | - ) | |
| 153 | - # classify the values of the fully-connected sigmoidal layer | |
| 154 | - layer4 = LogisticRegression(input=layer3.output, n_in=500, n_out=2) | |
| 155 | - | |
| 156 | - # the cost we minimize during training is the NLL of the model | |
| 157 | - cost = layer4.negative_log_likelihood(y) | |
| 158 | - params = layer4.params + layer3.params + layer2.params + layer1.params + layer0.params | |
| 159 | - grads = T.grad(cost, params) | |
| 160 | - updates = [ | |
| 161 | - (param_i, param_i - learning_rate * grad_i) | |
| 162 | - for param_i, grad_i in zip(params, grads) | |
| 163 | - ] | |
| 164 | - | |
| 165 | - train_model = theano.function( | |
| 166 | - [index], | |
| 167 | - cost, | |
| 168 | - updates=updates, | |
| 169 | - givens={ | |
| 170 | - x: X_train[index * batch_size: (index + 1) * batch_size], | |
| 171 | - y: Y_train[index * batch_size: (index + 1) * batch_size] | |
| 172 | - } | |
| 173 | - ) | |
| 174 | - | |
| 175 | - test_model = theano.function( | |
| 176 | - [index], | |
| 177 | - layer4.errors(y), | |
| 178 | - givens={ | |
| 179 | - x: X_test[index * batch_size: (index + 1) * batch_size], | |
| 180 | - y: Y_test[index * batch_size: (index + 1) * batch_size] | |
| 181 | - } | |
| 182 | - ) | |
| 183 | - | |
| 184 | - ############### | |
| 185 | - # TRAIN MODEL # | |
| 186 | - ############### | |
| 187 | - print '... training' | |
| 188 | - # early-stopping parameters | |
| 189 | - patience = 10000 # look as this many examples regardless | |
| 190 | - patience_increase = 2 # wait this much longer when a new best is found | |
| 191 | - improvement_threshold = 0.995 # a relative improvement of this much is | |
| 192 | - # considered significant | |
| 193 | - validation_frequency = min(n_train_batches, patience / 2) | |
| 194 | - # go through this many | |
| 195 | - # minibatche before checking the network | |
| 196 | - # on the validation set; in this case we | |
| 197 | - # check every epoch | |
| 198 | - | |
| 199 | - best_validation_loss = np.inf | |
| 200 | - best_iter = 0 | |
| 201 | - test_score = 0. | |
| 202 | - start_time = time.clock() | |
| 203 | - | |
| 204 | - epoch = 0 | |
| 205 | - done_looping = False | |
| 206 | - | |
| 207 | - while (epoch < n_epochs) and (not done_looping): | |
| 208 | - epoch = epoch + 1 | |
| 209 | - for minibatch_index in xrange(n_train_batches): | |
| 210 | - | |
| 211 | - iter = (epoch - 1) * n_train_batches + minibatch_index | |
| 212 | - | |
| 213 | - # if iter % 100 == 0: | |
| 214 | - # print 'training @ iter = ', iter | |
| 215 | - print 'training @ iter = ', iter | |
| 216 | - cost_ij = train_model(minibatch_index) | |
| 217 | - | |
| 218 | - if (iter + 1) % validation_frequency == 0: | |
| 219 | - | |
| 220 | - # compute zero-one loss on validation set | |
| 221 | - validation_losses = [test_model(i) for i in xrange(n_test_batches)] | |
| 222 | - this_validation_loss = np.mean(validation_losses) | |
| 223 | - print('epoch %i, minibatch %i/%i, validation error %f %%' % | |
| 224 | - (epoch, minibatch_index + 1, n_train_batches, | |
| 225 | - this_validation_loss * 100.)) | |
| 226 | - | |
| 227 | - # if we got the best validation score until now | |
| 228 | - if this_validation_loss < best_validation_loss: | |
| 229 | - | |
| 230 | - # improve patience if loss improvement is good enough | |
| 231 | - if this_validation_loss < best_validation_loss * \ | |
| 232 | - improvement_threshold: | |
| 233 | - patience = max(patience, iter * patience_increase) | |
| 234 | - | |
| 235 | - # save best validation score and iteration number | |
| 236 | - best_validation_loss = this_validation_loss | |
| 237 | - best_iter = iter | |
| 238 | - | |
| 239 | - if patience <= iter: | |
| 240 | - done_looping = True | |
| 241 | - break | |
| 242 | - | |
| 243 | - end_time = time.clock() | |
| 244 | - print('Optimization complete.') | |
| 245 | - print('Best validation score of %f %% obtained at iteration %i, ' | |
| 246 | - 'with test performance %f %%' % | |
| 247 | - (best_validation_loss * 100., best_iter + 1, test_score * 100.)) | |
| 248 | - print >> sys.stderr, ('The code for file ' + | |
| 249 | - os.path.split(__file__)[1] + | |
| 250 | - ' ran for %.2fm' % ((end_time - start_time) / 60.)) | |
| 70 | + return train_cnn_example(X, Y, dataset=dataset, learning_rate=learning_rate, n_epochs=n_epochs, nkerns=nkerns, | |
| 71 | + batch_size=batch_size) | |
| 251 | 72 | |
| 252 | 73 | |
| 253 | 74 | def train(self, X, Y): | ... | ... | 
mmodel/theano/theanoutil.py
| ... | ... | @@ -4,12 +4,16 @@ import os, sys | 
| 4 | 4 | import time | 
| 5 | 5 | |
| 6 | 6 | import numpy as np | 
| 7 | +from sklearn import cross_validation | |
| 7 | 8 | |
| 8 | 9 | import theano | 
| 9 | 10 | import theano.tensor as T | 
| 10 | 11 | from theano.tensor.signal import downsample | 
| 11 | 12 | from theano.tensor.nnet import conv | 
| 12 | 13 | |
| 14 | +import cPickle | |
| 15 | + | |
| 16 | + | |
| 13 | 17 | class LogisticRegression(object): | 
| 14 | 18 | """ | 
| 15 | 19 | Multi-class Logistic Regression Class | 
| ... | ... | @@ -164,8 +168,223 @@ class ConvPoolLayer(object): | 
| 164 | 168 | self.output = T.tanh(pooled_out + self.b.dimshuffle('x', 0, 'x', 'x')) | 
| 165 | 169 | self.params = [self.W, self.b] | 
| 166 | 170 | |
| 171 | +def _shared_dataset(data_xy, borrow=True): | |
| 172 | + """ Function that loads the dataset into shared variables | |
| 167 | 173 | |
| 174 | + The reason we store our dataset in shared variables is to allow | |
| 175 | + Theano to copy it into the GPU memory (when code is run on GPU). | |
| 176 | + Since copying data into the GPU is slow, copying a minibatch everytime | |
| 177 | + is needed (the default behaviour if the data is not in a shared | |
| 178 | + variable) would lead to a large decrease in performance. | |
| 179 | + """ | |
| 180 | + data_x, data_y = data_xy | |
| 181 | + shared_x = theano.shared(np.asarray(data_x, | |
| 182 | + dtype=theano.config.floatX), | |
| 183 | + borrow=borrow) | |
| 184 | + shared_y = theano.shared(np.asarray(data_y, | |
| 185 | + dtype=theano.config.floatX), | |
| 186 | + borrow=borrow) | |
| 187 | + # When storing data on the GPU it has to be stored as floats | |
| 188 | + # therefore we will store the labels as ``floatX`` as well | |
| 189 | + # (``shared_y`` does exactly that). But during our computations | |
| 190 | + # we need them as ints (we use labels as index, and if they are | |
| 191 | + # floats it doesn't make sense) therefore instead of returning | |
| 192 | + # ``shared_y`` we will have to cast it to int. This little hack | |
| 193 | + # lets ous get around this issue | |
| 194 | + return shared_x, T.cast(shared_y, 'int32') | |
| 195 | + | |
| 196 | +def train_cnn_example(X=None, Y=None, dataset=os.path.join('', '../../res/', 'ils_crop.pkl'), | |
| 197 | + learning_rate=0.1, n_epochs=200, | |
| 198 | + nkerns=[20, 50, 50], | |
| 199 | + batch_size=400): | |
| 200 | + | |
| 201 | + if X == None: | |
| 202 | + assert dataset != None | |
| 203 | + with open(dataset, 'rb') as f: | |
| 204 | + train_set, test_set = cPickle.load(f) | |
| 205 | + | |
| 206 | + X_train, Y_train = train_set | |
| 207 | + X_test, Y_test = test_set | |
| 208 | + else: | |
| 209 | + X_train, X_test, Y_train, Y_test = cross_validation.train_test_split(X, Y, test_size=0.2, random_state=0) | |
| 210 | + | |
| 211 | + X_train, Y_train = _shared_dataset((X_train, Y_train)) | |
| 212 | + X_test, Y_test = _shared_dataset((X_test, Y_test)) | |
| 213 | + | |
| 214 | + # X_train = theano.shared(np.asarray(X_train, dtype=theano.config.floatX), borrow=True) | |
| 215 | + # Y_train = theano.shared(np.asarray(Y_train, dtype=theano.config.floatX), borrow=True) | |
| 216 | + # X_test = theano.shared(np.asarray(X_test, dtype=theano.config.floatX), borrow=True) | |
| 217 | + # Y_test = theano.shared(np.asarray(Y_test, dtype=theano.config.floatX), borrow=True) | |
| 218 | + | |
| 219 | + n_train_batches = X_train.get_value(borrow=True).shape[0] / batch_size | |
| 220 | + n_test_batches = X_test.get_value(borrow=True).shape[0] / batch_size | |
| 221 | + | |
| 222 | + print X_train.get_value(borrow=True).shape, Y_train.shape | |
| 223 | + | |
| 224 | + rng = np.random.RandomState(12306) | |
| 225 | + index = T.lscalar() | |
| 226 | + x = T.matrix('x') | |
| 227 | + y = T.ivector('y') | |
| 228 | + | |
| 229 | + ###################### | |
| 230 | + # BUILD ACTUAL MODEL # | |
| 231 | + ###################### | |
| 232 | + print '... building the model' | |
| 233 | + | |
| 234 | + layer0_input = x.reshape((batch_size, 1, 304, 304)) | |
| 235 | + | |
| 236 | + # Construct the first convolutional pooling layer: | |
| 237 | + # filtering reduces the image size to (304-8+1 , 304-8+1) = (297, 297) | |
| 238 | + # maxpooling reduces this further to (297/4, 297/4) = (74, 74) | |
| 239 | + # 4D output tensor is thus of shape (batch_size, nkerns[0], 74, 74) | |
| 240 | + layer0 = ConvPoolLayer( | |
| 241 | + rng, | |
| 242 | + input=layer0_input, | |
| 243 | + image_shape=(batch_size, 1, 304, 304), | |
| 244 | + filter_shape=(nkerns[0], 1, 8, 8), | |
| 245 | + poolsize=(4, 4) | |
| 246 | + ) | |
| 247 | + | |
| 248 | + # Construct the second convolutional pooling layer | |
| 249 | + # filtering reduces the image size to (74-8+1, 74-8+1) = (67, 67) | |
| 250 | + # maxpooling reduces this further to (67/4, 67/4) = (16, 16) | |
| 251 | + # 4D output tensor is thus of shape (batch_size, nkerns[1], 16, 16) | |
| 252 | + layer1 = ConvPoolLayer( | |
| 253 | + rng, | |
| 254 | + input=layer0.output, | |
| 255 | + image_shape=(batch_size, nkerns[0], 74, 74), | |
| 256 | + filter_shape=(nkerns[1], nkerns[0], 8, 8), | |
| 257 | + poolsize=(4, 4) | |
| 258 | + ) | |
| 259 | + | |
| 260 | + # Construct the third convolutional pooling layer | |
| 261 | + # filtering reduces the image size to (16-5+1, 16-5+1) = (12, 12) | |
| 262 | + # maxpooling reduces this further to (12/3, 12/3) = (4, 4) | |
| 263 | + # 4D output tensor is thus of shape (batch_size, nkerns[2], 4, 4) | |
| 264 | + layer2 = ConvPoolLayer( | |
| 265 | + rng, | |
| 266 | + input=layer1.output, | |
| 267 | + image_shape=(batch_size, nkerns[1], 16, 16), | |
| 268 | + filter_shape=(nkerns[2], nkerns[1], 5, 5), | |
| 269 | + poolsize=(3, 3) | |
| 270 | + ) | |
| 271 | + | |
| 272 | + # the HiddenLayer being fully-connected, it operates on 2D matrices of | |
| 273 | + # shape (batch_size, num_pixels) (i.e matrix of rasterized images). | |
| 274 | + # This will generate a matrix of shape (batch_size, nkerns[2] * 4 * 4), | |
| 275 | + # or (500, 50 * 4 * 4) = (500, 800) with the default values. | |
| 276 | + layer3_input = layer2.output.flatten(2) | |
| 277 | + # construct a fully-connected sigmoidal layer | |
| 278 | + layer3 = HiddenLayer( | |
| 279 | + rng, | |
| 280 | + input=layer3_input, | |
| 281 | + n_in=nkerns[2] * 4 * 4, | |
| 282 | + n_out=500, | |
| 283 | + activation=T.tanh | |
| 284 | + ) | |
| 285 | + # classify the values of the fully-connected sigmoidal layer | |
| 286 | + layer4 = LogisticRegression(input=layer3.output, n_in=500, n_out=2) | |
| 287 | + | |
| 288 | + # the cost we minimize during training is the NLL of the model | |
| 289 | + cost = layer4.negative_log_likelihood(y) | |
| 290 | + params = layer4.params + layer3.params + layer2.params + layer1.params + layer0.params | |
| 291 | + grads = T.grad(cost, params) | |
| 292 | + updates = [ | |
| 293 | + (param_i, param_i - learning_rate * grad_i) | |
| 294 | + for param_i, grad_i in zip(params, grads) | |
| 295 | + ] | |
| 168 | 296 | |
| 297 | + """ | |
| 298 | + Total Parameters: | |
| 299 | + >>> 20 * 64 + 1000 * 64 + 2500 * 25 + 50 * 16 * 500 + 500 * 2 | |
| 300 | + 528780 | |
| 301 | + """ | |
| 302 | + train_model = theano.function( | |
| 303 | + [index], | |
| 304 | + cost, | |
| 305 | + updates=updates, | |
| 306 | + givens={ | |
| 307 | + x: X_train[index * batch_size: (index + 1) * batch_size], | |
| 308 | + y: Y_train[index * batch_size: (index + 1) * batch_size] | |
| 309 | + } | |
| 310 | + ) | |
| 311 | + | |
| 312 | + test_model = theano.function( | |
| 313 | + [index], | |
| 314 | + layer4.errors(y), | |
| 315 | + givens={ | |
| 316 | + x: X_test[index * batch_size: (index + 1) * batch_size], | |
| 317 | + y: Y_test[index * batch_size: (index + 1) * batch_size] | |
| 318 | + } | |
| 319 | + ) | |
| 320 | + | |
| 321 | + ############### | |
| 322 | + # TRAIN MODEL # | |
| 323 | + ############### | |
| 324 | + print '... training' | |
| 325 | + # early-stopping parameters | |
| 326 | + patience = 10000 # look as this many examples regardless | |
| 327 | + patience_increase = 2 # wait this much longer when a new best is found | |
| 328 | + improvement_threshold = 0.995 # a relative improvement of this much is | |
| 329 | + # considered significant | |
| 330 | + validation_frequency = min(n_train_batches, patience / 2) | |
| 331 | + # go through this many | |
| 332 | + # minibatche before checking the network | |
| 333 | + # on the validation set; in this case we | |
| 334 | + # check every epoch | |
| 335 | + | |
| 336 | + best_validation_loss = np.inf | |
| 337 | + best_iter = 0 | |
| 338 | + test_score = 0. | |
| 339 | + start_time = time.clock() | |
| 340 | + | |
| 341 | + epoch = 0 | |
| 342 | + done_looping = False | |
| 343 | + | |
| 344 | + while (epoch < n_epochs) and (not done_looping): | |
| 345 | + epoch = epoch + 1 | |
| 346 | + for minibatch_index in xrange(n_train_batches): | |
| 347 | + | |
| 348 | + iter = (epoch - 1) * n_train_batches + minibatch_index | |
| 349 | + | |
| 350 | + # if iter % 100 == 0: | |
| 351 | + # print 'training @ iter = ', iter | |
| 352 | + print 'training @ iter = ', iter | |
| 353 | + cost_ij = train_model(minibatch_index) | |
| 354 | + | |
| 355 | + if (iter + 1) % validation_frequency == 0: | |
| 356 | + | |
| 357 | + # compute zero-one loss on validation set | |
| 358 | + validation_losses = [test_model(i) for i in xrange(n_test_batches)] | |
| 359 | + this_validation_loss = np.mean(validation_losses) | |
| 360 | + print('epoch %i, minibatch %i/%i, validation error %f %%' % | |
| 361 | + (epoch, minibatch_index + 1, n_train_batches, | |
| 362 | + this_validation_loss * 100.)) | |
| 363 | + | |
| 364 | + # if we got the best validation score until now | |
| 365 | + if this_validation_loss < best_validation_loss: | |
| 366 | + | |
| 367 | + # improve patience if loss improvement is good enough | |
| 368 | + if this_validation_loss < best_validation_loss * \ | |
| 369 | + improvement_threshold: | |
| 370 | + patience = max(patience, iter * patience_increase) | |
| 371 | + | |
| 372 | + # save best validation score and iteration number | |
| 373 | + best_validation_loss = this_validation_loss | |
| 374 | + best_iter = iter | |
| 375 | + | |
| 376 | + if patience <= iter: | |
| 377 | + done_looping = True | |
| 378 | + break | |
| 379 | + | |
| 380 | + end_time = time.clock() | |
| 381 | + print('Optimization complete.') | |
| 382 | + print('Best validation score of %f %% obtained at iteration %i, ' | |
| 383 | + 'with test performance %f %%' % | |
| 384 | + (best_validation_loss * 100., best_iter + 1, test_score * 100.)) | |
| 385 | + print >> sys.stderr, ('The code for file ' + | |
| 386 | + os.path.split(__file__)[1] + | |
| 387 | + ' ran for %.2fm' % ((end_time - start_time) / 60.)) | |
| 169 | 388 | |
| 170 | 389 | |
| 171 | 390 | ... | ... |