theanoutil.py
13.3 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
__author__ = 'chunk'
import os, sys
import time
import numpy as np
from sklearn import cross_validation
import theano
import theano.tensor as T
from theano.tensor.signal import downsample
from theano.tensor.nnet import conv
import cPickle
class LogisticRegression(object):
"""
Multi-class Logistic Regression Class
"""
def __init__(self, input, n_in, n_out):
"""
Initialize the parameters of the logistic regression
"""
self.W = theano.shared(
value=np.zeros(
(n_in, n_out),
dtype=theano.config.floatX
),
name='W',
borrow=True
)
self.b = theano.shared(
value=np.zeros(
(n_out,),
dtype=theano.config.floatX
),
name='b',
borrow=True
)
self.p_y_given_x = T.nnet.softmax(T.dot(input, self.W) + self.b)
self.y_pred = T.argmax(self.p_y_given_x, axis=1)
self.params = [self.W, self.b]
def negative_log_likelihood(self, y):
"""
Return the mean of the negative log-likelihood of the prediction
of this model under a given target distribution.
"""
return -T.mean(T.log(self.p_y_given_x)[T.arange(y.shape[0]), y])
def errors(self, y):
"""
Return a float representing the number of errors in the minibatch
over the total number of examples of the minibatch ; zero one
loss over the size of the minibatch
"""
if y.ndim != self.y_pred.ndim:
raise TypeError(
'y should have the same shape as self.y_pred',
('y', y.type, 'y_pred', self.y_pred.type)
)
if y.dtype.startswith('int'):
return T.mean(T.neq(self.y_pred, y))
else:
raise NotImplementedError()
class HiddenLayer(object):
def __init__(self, rng, input, n_in, n_out, W=None, b=None,
activation=T.tanh):
self.input = input
if W is None:
W_values = np.asarray(
rng.uniform(
low=-np.sqrt(6. / (n_in + n_out)),
high=np.sqrt(6. / (n_in + n_out)),
size=(n_in, n_out)
),
dtype=theano.config.floatX
)
if activation == theano.tensor.nnet.sigmoid:
W_values *= 4
W = theano.shared(value=W_values, name='W', borrow=True)
if b is None:
b_values = np.zeros((n_out,), dtype=theano.config.floatX)
b = theano.shared(value=b_values, name='b', borrow=True)
self.W = W
self.b = b
lin_output = T.dot(input, self.W) + self.b
self.output = (
lin_output if activation is None
else activation(lin_output)
)
# parameters of the model
self.params = [self.W, self.b]
class MLP(object):
def __init__(self, rng, input, n_in, n_hidden, n_out):
self.hiddenLayer = HiddenLayer(
rng=rng,
input=input,
n_in=n_in,
n_out=n_hidden,
activation=T.tanh
)
self.logRegressionLayer = LogisticRegression(
input=self.hiddenLayer.output,
n_in=n_hidden,
n_out=n_out
)
self.L1 = (
abs(self.hiddenLayer.W).sum()
+ abs(self.logRegressionLayer.W).sum()
)
self.L2_sqr = (
(self.hiddenLayer.W ** 2).sum()
+ (self.logRegressionLayer.W ** 2).sum()
)
self.negative_log_likelihood = (
self.logRegressionLayer.negative_log_likelihood
)
self.errors = self.logRegressionLayer.errors
self.params = self.hiddenLayer.params + self.logRegressionLayer.params
class ConvPoolLayer(object):
"""Pool Layer of a convolutional network """
def __init__(self, rng, input, filter_shape, image_shape, poolsize=(2, 2)):
assert image_shape[1] == filter_shape[1]
self.input = input
fan_in = np.prod(filter_shape[1:])
fan_out = (filter_shape[0] * np.prod(filter_shape[2:]) /
np.prod(poolsize))
W_bound = np.sqrt(6. / (fan_in + fan_out))
self.W = theano.shared(
np.asarray(
rng.uniform(low=-W_bound, high=W_bound, size=filter_shape),
dtype=theano.config.floatX
),
borrow=True
)
b_values = np.zeros((filter_shape[0],), dtype=theano.config.floatX)
self.b = theano.shared(value=b_values, borrow=True)
conv_out = conv.conv2d(
input=input,
filters=self.W,
filter_shape=filter_shape,
image_shape=image_shape
)
pooled_out = downsample.max_pool_2d(
input=conv_out,
ds=poolsize,
ignore_border=True
)
self.output = T.tanh(pooled_out + self.b.dimshuffle('x', 0, 'x', 'x'))
self.params = [self.W, self.b]
def _shared_dataset(data_xy, borrow=True):
""" Function that loads the dataset into shared variables
The reason we store our dataset in shared variables is to allow
Theano to copy it into the GPU memory (when code is run on GPU).
Since copying data into the GPU is slow, copying a minibatch everytime
is needed (the default behaviour if the data is not in a shared
variable) would lead to a large decrease in performance.
"""
data_x, data_y = data_xy
shared_x = theano.shared(np.asarray(data_x,
dtype=theano.config.floatX),
borrow=borrow)
shared_y = theano.shared(np.asarray(data_y,
dtype=theano.config.floatX),
borrow=borrow)
# When storing data on the GPU it has to be stored as floats
# therefore we will store the labels as ``floatX`` as well
# (``shared_y`` does exactly that). But during our computations
# we need them as ints (we use labels as index, and if they are
# floats it doesn't make sense) therefore instead of returning
# ``shared_y`` we will have to cast it to int. This little hack
# lets ous get around this issue
return shared_x, T.cast(shared_y, 'int32')
def train_cnn_example(X=None, Y=None, dataset=os.path.join('', '../../res/', 'ils_crop.pkl'),
learning_rate=0.1, n_epochs=200,
nkerns=[20, 50, 50],
batch_size=400):
if X == None:
assert dataset != None
with open(dataset, 'rb') as f:
train_set, test_set = cPickle.load(f)
X_train, Y_train = train_set
X_test, Y_test = test_set
else:
X_train, X_test, Y_train, Y_test = cross_validation.train_test_split(X, Y, test_size=0.2, random_state=0)
X_train, Y_train = _shared_dataset((X_train, Y_train))
X_test, Y_test = _shared_dataset((X_test, Y_test))
# X_train = theano.shared(np.asarray(X_train, dtype=theano.config.floatX), borrow=True)
# Y_train = theano.shared(np.asarray(Y_train, dtype=theano.config.floatX), borrow=True)
# X_test = theano.shared(np.asarray(X_test, dtype=theano.config.floatX), borrow=True)
# Y_test = theano.shared(np.asarray(Y_test, dtype=theano.config.floatX), borrow=True)
n_train_batches = X_train.get_value(borrow=True).shape[0] / batch_size
n_test_batches = X_test.get_value(borrow=True).shape[0] / batch_size
print X_train.get_value(borrow=True).shape, Y_train.shape
rng = np.random.RandomState(12306)
index = T.lscalar()
x = T.matrix('x')
y = T.ivector('y')
######################
# BUILD ACTUAL MODEL #
######################
print '... building the model'
layer0_input = x.reshape((batch_size, 1, 304, 304))
# Construct the first convolutional pooling layer:
# filtering reduces the image size to (304-8+1 , 304-8+1) = (297, 297)
# maxpooling reduces this further to (297/4, 297/4) = (74, 74)
# 4D output tensor is thus of shape (batch_size, nkerns[0], 74, 74)
layer0 = ConvPoolLayer(
rng,
input=layer0_input,
image_shape=(batch_size, 1, 304, 304),
filter_shape=(nkerns[0], 1, 8, 8),
poolsize=(4, 4)
)
# Construct the second convolutional pooling layer
# filtering reduces the image size to (74-8+1, 74-8+1) = (67, 67)
# maxpooling reduces this further to (67/4, 67/4) = (16, 16)
# 4D output tensor is thus of shape (batch_size, nkerns[1], 16, 16)
layer1 = ConvPoolLayer(
rng,
input=layer0.output,
image_shape=(batch_size, nkerns[0], 74, 74),
filter_shape=(nkerns[1], nkerns[0], 8, 8),
poolsize=(4, 4)
)
# Construct the third convolutional pooling layer
# filtering reduces the image size to (16-5+1, 16-5+1) = (12, 12)
# maxpooling reduces this further to (12/3, 12/3) = (4, 4)
# 4D output tensor is thus of shape (batch_size, nkerns[2], 4, 4)
layer2 = ConvPoolLayer(
rng,
input=layer1.output,
image_shape=(batch_size, nkerns[1], 16, 16),
filter_shape=(nkerns[2], nkerns[1], 5, 5),
poolsize=(3, 3)
)
# the HiddenLayer being fully-connected, it operates on 2D matrices of
# shape (batch_size, num_pixels) (i.e matrix of rasterized images).
# This will generate a matrix of shape (batch_size, nkerns[2] * 4 * 4),
# or (500, 50 * 4 * 4) = (500, 800) with the default values.
layer3_input = layer2.output.flatten(2)
# construct a fully-connected sigmoidal layer
layer3 = HiddenLayer(
rng,
input=layer3_input,
n_in=nkerns[2] * 4 * 4,
n_out=500,
activation=T.tanh
)
# classify the values of the fully-connected sigmoidal layer
layer4 = LogisticRegression(input=layer3.output, n_in=500, n_out=2)
# the cost we minimize during training is the NLL of the model
cost = layer4.negative_log_likelihood(y)
params = layer4.params + layer3.params + layer2.params + layer1.params + layer0.params
grads = T.grad(cost, params)
updates = [
(param_i, param_i - learning_rate * grad_i)
for param_i, grad_i in zip(params, grads)
]
"""
Total Parameters:
>>> 20 * 64 + 1000 * 64 + 2500 * 25 + 50 * 16 * 500 + 500 * 2
528780
"""
train_model = theano.function(
[index],
cost,
updates=updates,
givens={
x: X_train[index * batch_size: (index + 1) * batch_size],
y: Y_train[index * batch_size: (index + 1) * batch_size]
}
)
test_model = theano.function(
[index],
layer4.errors(y),
givens={
x: X_test[index * batch_size: (index + 1) * batch_size],
y: Y_test[index * batch_size: (index + 1) * batch_size]
}
)
###############
# TRAIN MODEL #
###############
print '... training'
# early-stopping parameters
patience = 10000 # look as this many examples regardless
patience_increase = 2 # wait this much longer when a new best is found
improvement_threshold = 0.995 # a relative improvement of this much is
# considered significant
validation_frequency = min(n_train_batches, patience / 2)
# go through this many
# minibatche before checking the network
# on the validation set; in this case we
# check every epoch
best_validation_loss = np.inf
best_iter = 0
test_score = 0.
start_time = time.clock()
epoch = 0
done_looping = False
while (epoch < n_epochs) and (not done_looping):
epoch = epoch + 1
for minibatch_index in xrange(n_train_batches):
iter = (epoch - 1) * n_train_batches + minibatch_index
# if iter % 100 == 0:
# print 'training @ iter = ', iter
print 'training @ iter = ', iter
cost_ij = train_model(minibatch_index)
if (iter + 1) % validation_frequency == 0:
# compute zero-one loss on validation set
validation_losses = [test_model(i) for i in xrange(n_test_batches)]
this_validation_loss = np.mean(validation_losses)
print('epoch %i, minibatch %i/%i, validation error %f %%' %
(epoch, minibatch_index + 1, n_train_batches,
this_validation_loss * 100.))
# if we got the best validation score until now
if this_validation_loss < best_validation_loss:
# improve patience if loss improvement is good enough
if this_validation_loss < best_validation_loss * \
improvement_threshold:
patience = max(patience, iter * patience_increase)
# save best validation score and iteration number
best_validation_loss = this_validation_loss
best_iter = iter
if patience <= iter:
done_looping = True
break
end_time = time.clock()
print('Optimization complete.')
print('Best validation score of %f %% obtained at iteration %i, '
'with test performance %f %%' %
(best_validation_loss * 100., best_iter + 1, test_score * 100.))
print >> sys.stderr, ('The code for file ' +
os.path.split(__file__)[1] +
' ran for %.2fm' % ((end_time - start_time) / 60.))