ILSVRC.py 18.9 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531
__author__ = 'chunk'

from . import *
from ..mfeat import HOG, IntraBlockDiff
from ..mspark import SC
from ..common import *

import os, sys
from PIL import Image
from hashlib import md5
import csv
import shutil
import json
import collections
import happybase

from ..mjpeg import *
from ..msteg import *
from ..msteg.steganography import LSB, F3, F4, F5

import numpy as np
from numpy.random import randn
import pandas as pd
from scipy import stats
import random

from subprocess import Popen, PIPE, STDOUT


np.random.seed(sum(map(ord, "whoami")))

package_dir = os.path.dirname(os.path.abspath(__file__))


class DataILSVRC(DataDumperBase):
    def __init__(self, base_dir='/media/chunk/Elements/D/data/ImageNet/img/ILSVRC2013_DET_val', category='Train'):
        DataDumperBase.__init__(self, base_dir, category)

        self.base_dir = base_dir
        self.category = category
        self.data_dir = os.path.join(self.base_dir, self.category)

        self.dst_dir = os.path.join(self.base_dir, 'dst', self.category)
        self.list_file = os.path.join(self.dst_dir, 'file-tag.tsv')
        self.feat_dir = os.path.join(self.dst_dir, 'Feat')
        self.img_dir = os.path.join(self.dst_dir, 'Img')

        self.dict_data = {}

        self.table_name = self.base_dir.strip('/').split('/')[-1] + '-' + self.category
        self.sparker = None

    def format(self):
        print "formatting..."
        self.extract()

    def _hash_copy(self, image):
        if not image.endswith('jpg'):
            img = Image.open(image)
            img.save('../res/tmp.jpg', format='JPEG')
            image = '../res/tmp.jpg'

        with open(image, 'rb') as f:
            index = md5(f.read()).hexdigest()

        im = Jpeg(image, key=sample_key)
        self.dict_data[index] = [im.image_width, im.image_height, im.image_width * im.image_height, im.getCapacity(),
                                 im.getQuality()]

        # self.dict_data[index] = [im.image_width, im.image_height, os.path.getsize(image), im.getQuality()]

        # origion:
        # dir = base + 'Img/Train/' + index[:3]
        dir = os.path.join(self.img_dir, index[:3])
        if not os.path.exists(dir):
            os.makedirs(dir)
        image_path = os.path.join(dir, index[3:] + '.jpg')
        # print image_path

        if not os.path.exists(image_path):
            shutil.copy(image, image_path)
        else:
            pass

    def get_feat(self, image, feattype='ibd', **kwargs):
        size = kwargs.get('size', (48, 48))

        if feattype == 'hog':
            feater = HOG.FeatHOG(size=size)
        elif feattype == 'ibd':
            feater = IntraBlockDiff.FeatIntraBlockDiff()
        else:
            raise Exception("Unknown feature type!")

        desc = feater.feat(image)

        return desc


    def extract_feat(self, feattype='ibd'):
        print "extracting feat..."
        if feattype == 'hog':
            feater = HOG.FeatHOG(size=(48, 48))
        elif feattype == 'ibd':
            feater = IntraBlockDiff.FeatIntraBlockDiff()
        else:
            raise Exception("Unknown feature type!")

        list_image = []
        with open(self.list_file, 'rb') as tsvfile:
            tsvfile = csv.reader(tsvfile, delimiter='\t')
            for line in tsvfile:
                list_image.append(line[0])

        dict_featbuf = {}
        for imgname in list_image:
            # if imgtag == 'True':
            image = os.path.join(self.img_dir, imgname[:3], imgname[3:] + '.jpg')
            desc = feater.feat(image)
            dict_featbuf[imgname] = desc

        for imgname, desc in dict_featbuf.items():
            # print imgname, desc
            dir = os.path.join(self.feat_dir, imgname[:3])
            if not os.path.exists(dir):
                os.makedirs(dir)
            featpath = os.path.join(dir, imgname[3:].split('.')[0] + '.' + feattype)
            with open(featpath, 'wb') as featfile:
                featfile.write(json.dumps(desc.tolist()))

    def _build_list(self, list_file=None):
        if list_file == None:
            list_file = self.list_file
        assert list_file != None

        ordict_img = collections.OrderedDict(sorted(self.dict_data.items(), key=lambda d: d[0]))

        with open(list_file, 'w') as f:
            tsvfile = csv.writer(f, delimiter='\t')
            for key, value in ordict_img.items():
                tsvfile.writerow([key] + value)

    def _anaylis(self, list_file=None):
        if list_file == None:
            list_file = self.list_file
        assert list_file != None

        df_ILS = pd.read_csv(list_file, names=['hash', 'width', 'height', 'size', 'capacity', 'quality'], sep='\t')
        length = df_ILS.shape[0]
        df_ILS = df_ILS.sort(['capacity', 'size', 'quality'], ascending=True)
        rand_class = stats.bernoulli.rvs(0.8, size=length)

        df_ILS['rate'] = np.zeros(df_ILS.shape[0], np.float64)
        df_ILS['chosen'] = rand_class
        df_ILS['class'] = np.zeros(length, np.int32)

        df_ILS.to_csv(list_file, header=False, index=False, sep='\t')

    def extract(self):
        print "extracting data..."
        for path, subdirs, files in os.walk(self.data_dir):
            for name in files:
                imagepath = os.path.join(path, name)
                # print imagepath
                try:
                    self._hash_copy(imagepath)
                except:
                    pass

        self._build_list()
        self._anaylis()


    def _embed_outer(self):
        self.dict_data = {}
        dict_embedresult = {}
        os.environ["CLASSPATH"] = os.path.join(package_dir, "../libs/F5/")
        cmd = 'java Embed %s %s -e %s  -p password -c "stegan by chunk  " -q %d'

        df_ILS = pd.read_csv(self.list_file,
                             names=['hash', 'width', 'height', 'size', 'capacity', 'quality', 'chosen', 'class'],
                             sep='\t')
        df_ILS_TARGET = df_ILS[df_ILS['chosen'] == 1]

        for hash, size, quality in zip(df_ILS_TARGET['hash'], df_ILS_TARGET['size'], df_ILS_TARGET['quality']):
            path_img = os.path.join(self.img_dir, hash[:3], hash[3:] + '.jpg')
            if path_img:
                print path_img
                p = Popen(cmd % (path_img, 'res/tmp.jpg', 'res/toembed', quality), shell=True, stdout=PIPE,
                          stderr=STDOUT)
                dict_embedresult[hash] = [line.strip('\n') for line in p.stdout.readlines()]
                try:
                    self._hash_copy('res/tmp.jpg')
                except:
                    pass

        with open(self.list_file + '.embed.log', 'wb') as f:
            tsvfile = csv.writer(f, delimiter='\t')
            for key, value in dict_embedresult.items():
                tsvfile.writerow([key] + value)

        self._build_list(self.list_file + '.embed')

        # merge
        df_ILS_EMBED = pd.read_csv(self.list_file + '.embed', names=['hash', 'width', 'height', 'size', 'quality'],
                                   sep='\t')
        length = df_ILS_EMBED.shape[0]
        df_ILS_EMBED = df_ILS_EMBED.sort(['size', 'quality'], ascending=True)
        df_ILS_EMBED['chosen'] = np.zeros(length, np.int32)
        df_ILS_EMBED['class'] = np.ones(length, np.int32)

        df_ILS = df_ILS.append(df_ILS_EMBED, ignore_index=True)
        df_ILS.to_csv(self.list_file, header=False, index=False, sep='\t')

    def _embed_inner(self, rate=None):
        self.dict_data = {}
        f5 = F5.F5(sample_key, 1)
        tmp_img = os.path.join(package_dir, '../res/tmp.jpg')
        df_ILS = pd.read_csv(self.list_file,
                             names=['hash', 'width', 'height', 'size', 'capacity', 'quality', 'rate', 'chosen',
                                    'class'],
                             sep='\t')
        df_ILS_TARGET = df_ILS[df_ILS['chosen'] == 1]

        for hash, capacity in zip(df_ILS_TARGET['hash'], df_ILS_TARGET['capacity']):
            path_img = os.path.join(self.img_dir, hash[:3], hash[3:] + '.jpg')
            if path_img:
                print path_img
                if rate == None:
                    embed_rate = f5.embed_raw_data(path_img, os.path.join(package_dir, '../res/toembed'), tmp_img)
                else:
                    assert (rate >= 0 and rate < 1)
                    # print capacity
                    hidden = np.random.bytes(int(capacity * rate) / 8)
                    embed_rate = f5.embed_raw_data(path_img, hidden, tmp_img, frommem=True)
                try:
                    with open(tmp_img, 'rb') as f:
                        index = md5(f.read()).hexdigest()
                    im = Jpeg(tmp_img, key=sample_key)
                    self.dict_data[index] = [im.image_width, im.image_height, im.image_width * im.image_height,
                                             im.getCapacity(),
                                             im.getQuality(), embed_rate]

                    dir = os.path.join(self.img_dir, index[:3])
                    if not os.path.exists(dir):
                        os.makedirs(dir)
                    image_path = os.path.join(dir, index[3:] + '.jpg')
                    if not os.path.exists(image_path):
                        shutil.copy(tmp_img, image_path)
                    else:
                        pass
                except:
                    pass

        self._build_list(self.list_file + '.embed')

        # merge
        df_ILS_EMBED = pd.read_csv(self.list_file + '.embed',
                                   names=['hash', 'width', 'height', 'size', 'capacity', 'quality', 'rate'],
                                   sep='\t')

        df_ILS_EMBED = df_ILS_EMBED.sort(['rate', 'capacity', 'size', 'quality'], ascending=True)
        df_ILS_EMBED['chosen'] = np.zeros(df_ILS_EMBED.shape[0], np.int32)
        df_ILS_EMBED['class'] = np.ones(df_ILS_EMBED.shape[0], np.int32)

        # print df_ILS_EMBED.dtypes
        # print df_ILS.dtypes
        # Form the intersection of two Index objects. Sortedness of the result is not guaranteed
        df_ILS = df_ILS.append(df_ILS_EMBED, ignore_index=True)
        df_ILS.to_csv(self.list_file, header=False, index=False, sep='\t')

    def embed(self, rate=None):
        print "embedding data..."
        self._embed_inner(rate)


    def crop(self, size=(300, 300)):
        cropped_dir = self.data_dir + '_crop_pil'
        if not os.path.exists(cropped_dir):
            os.makedirs(cropped_dir)
        for path, subdirs, files in os.walk(self.data_dir):
            for name in files:
                image = os.path.join(path, name)
                print image

                W, H = size
                try:
                    im = Image.open(image)
                    qt = im.quantization
                    w, h = im.size
                    if w < W or h < H:
                        continue
                    left, upper = random.randint(0, w - W), random.randint(0, h - H)
                    im = im.crop((left, upper, left + W, upper + H))
                    im.save(os.path.join(cropped_dir, name), qtables=qt)
                except Exception as e:
                    print '[EXCPT]', e
                    pass

                    # try:
                    # img = cv2.imread(image, cv2.CV_LOAD_IMAGE_UNCHANGED)
                    # h, w = img.shape[:2]
                    # if w < 300 or h < 300:
                    # continue
                    # left, upper = random.randint(0, w - 300), random.randint(0, h - 300)
                    # img_crop = img[upper:upper + 300, left:left + 300]
                    # cv2.imwrite(os.path.join(base_dir, category + '_crop_cv', name), img_crop)
                    # except Exception as e:
                    # print '[EXCPT]', e
                    #     pass


    def get_table(self):
        print "getting table..."
        if self.table != None:
            return self.table

        if self.connection is None:
            c = happybase.Connection('HPC-server')
            self.connection = c

        tables = self.connection.tables()
        if self.table_name not in tables:
            families = {'cf_pic': dict(),
                        'cf_info': dict(max_versions=10),
                        'cf_tag': dict(),
                        'cf_feat': dict(),
                        }
            self.connection.create_table(name=self.table_name, families=families)

        table = self.connection.table(name=self.table_name)

        self.table = table

        return table

    def delete_table(self, table_name=None, disable=True):
        print "deleting table..."
        if table_name == None:
            table_name = self.table_name

        if self.connection is None:
            c = happybase.Connection('HPC-server')
            self.connection = c

        tables = self.connection.tables()
        if table_name not in tables:
            return False
        else:
            try:
                self.connection.delete_table(table_name, disable)
            except:
                print 'Exception when deleting table.'
                raise
        return True

    def store_img(self):
        if self.table == None:
            self.table = self.get_table()

        dict_databuf = {}

        with open(self.list_file, 'rb') as tsvfile:
            tsvfile = csv.reader(tsvfile, delimiter='\t')
            for line in tsvfile:
                path_img = os.path.join(self.img_dir, line[0][:3], line[0][3:] + '.jpg')
                if path_img:
                    with open(path_img, 'rb') as fpic:
                        dict_databuf[line[0] + '.jpg'] = fpic.read()

        try:
            with self.table.batch(batch_size=2000) as b:
                for imgname, imgdata in dict_databuf.items():
                    b.put(imgname, {'cf_pic:data': imgdata})
        except ValueError:
            raise


    def store_info(self, infotype='all'):
        if self.table == None:
            self.table = self.get_table()

        dict_infobuf = {}

        with open(self.list_file, 'rb') as tsvfile:
            tsvfile = csv.reader(tsvfile, delimiter='\t')
            for line in tsvfile:
                dict_infobuf[line[0] + '.jpg'] = line[1:-2]

        if infotype == 'all':
            try:
                with self.table.batch(batch_size=5000) as b:
                    for imgname, imginfo in dict_infobuf.items():
                        b.put(imgname,
                              {'cf_info:width': imginfo[0], 'cf_info:height': imginfo[1], 'cf_info:size': imginfo[2],
                               'cf_info:capacity': imginfo[3],
                               'cf_info:quality': imginfo[4]})
            except ValueError:
                raise
        else:
            raise Exception("Unknown infotype!")


    def store_tag(self, tagtype='all'):
        if self.table == None:
            self.table = self.get_table()

        dict_tagbuf = {}

        with open(self.list_file, 'rb') as tsvfile:
            tsvfile = csv.reader(tsvfile, delimiter='\t')
            for line in tsvfile:
                dict_tagbuf[line[0] + '.jpg'] = line[-2:]

        if tagtype == 'all':
            try:
                with self.table.batch(batch_size=5000) as b:
                    for imgname, imgtag in dict_tagbuf.items():
                        b.put(imgname, {'cf_tag:chosen': imgtag[0], 'cf_tag:class': imgtag[1]})
            except ValueError:
                raise
        else:
            raise Exception("Unknown tagtype!")


    def store_feat(self, feattype='ibd'):
        if self.table == None:
            self.table = self.get_table()

        dict_featbuf = {}
        for path, subdirs, files in os.walk(self.feat_dir):
            for name in files:
                featpath = os.path.join(path, name)
                # print featpath
                with open(featpath, 'rb') as featfile:
                    imgname = path.split('/')[-1] + name.replace('.' + feattype, '.jpg')
                    dict_featbuf[imgname] = featfile.read()

        try:
            with self.table.batch(batch_size=5000) as b:
                for imgname, featdesc in dict_featbuf.items():
                    b.put(imgname, {'cf_feat:' + feattype: featdesc})
        except ValueError:
            raise
            pass


    def load_data(self, mode='local', feattype='ibd', tagtype='class', shuffle=False):
        print "loading data..."
        INDEX = []
        X = []
        Y = []

        if mode == "local":

            dict_dataset = {}

            if feattype == 'coef':  # raw
                with open(self.list_file, 'rb') as tsvfile:
                    tsvfile = csv.reader(tsvfile, delimiter='\t')
                    for line in tsvfile:
                        hash = line[0]
                        tag = line[-1]
                        image = os.path.join(self.img_dir, hash[:3], hash[3:] + '.jpg')
                        if image:
                            im = Jpeg(image, key=sample_key)
                            dict_dataset[hash] = (tag, im.getCoefMatrix(channel='Y'))

                for tag, feat in dict_dataset.values():
                    feat.ravel()[[i * 200 + j for i in range(0, 200, 8) for j in range(0, 200, 8)]] = 0
                    feat = np.absolute(feat)
                    feat = np.bitwise_and(feat, 1)
                    X.append(feat.ravel())
                    Y.append(int(tag))

            else:
                with open(self.list_file, 'rb') as tsvfile:
                    tsvfile = csv.reader(tsvfile, delimiter='\t')
                    for line in tsvfile:
                        hash = line[0]
                        tag = line[-1]
                        path_feat = os.path.join(self.feat_dir, hash[:3], hash[3:] + '.' + feattype)
                        if path_feat:
                            with open(path_feat, 'rb') as featfile:
                                dict_dataset[hash] = (tag, json.loads(featfile.read()))

                for tag, feat in dict_dataset.values():
                    # X.append([item for sublist in feat for subsublist in sublist for item in subsublist])
                    X.append(np.array(feat).ravel().tolist())
                    Y.append(int(tag))

        elif mode == "hbase":  # remote
            if self.table == None:
                self.table = self.get_table()

            col_feat, col_tag = 'cf_feat:' + feattype, 'cf_tag:' + tagtype
            for key, data in self.table.scan(columns=[col_feat, col_tag]):
                X.append(
                    [item for sublist in json.loads(data[col_feat]) for subsublist in sublist for item in subsublist])
                Y.append(int(data[col_tag]))

        elif mode == "spark":  # cluster
            if self.sparker == None:
                self.sparker = SC.Sparker(host='HPC-server', appname='ImageCV', master='spark://HPC-server:7077')

            result = self.sparker.read_hbase(self.table_name)  # result = {key:[feat,tag],...}
            for feat, tag in result:
                X.append(feat)
                Y.append(tag)

        else:
            raise Exception("Unknown mode!")

        if shuffle:
            # shuffling
            Z = zip(X, Y)
            np.random.shuffle(Z)
            return Z

        return X, Y