Blame view

mdata/ILSVRC.py 18.9 KB
2c2d57c7   Chunk   ILSVRC datapath h...
1
2
3
__author__ = 'chunk'

from . import *
84648488   Chunk   reverted.
4
from ..mfeat import HOG, IntraBlockDiff
2c2d57c7   Chunk   ILSVRC datapath h...
5
6
7
8
9
10
11
12
13
14
15
16
17
18
from ..mspark import SC
from ..common import *

import os, sys
from PIL import Image
from hashlib import md5
import csv
import shutil
import json
import collections
import happybase

from ..mjpeg import *
from ..msteg import *
9ff70cf4   Chunk   capacity engeneer...
19
from ..msteg.steganography import LSB, F3, F4, F5
2c2d57c7   Chunk   ILSVRC datapath h...
20

d1042d03   Chunk   staged.
21
22
23
24
import numpy as np
from numpy.random import randn
import pandas as pd
from scipy import stats
ec755e37   Chunk   cropping.
25
import random
d1042d03   Chunk   staged.
26

080c30c2   Chunk   F5 lib updated. I...
27
28
from subprocess import Popen, PIPE, STDOUT

84648488   Chunk   reverted.
29

d1042d03   Chunk   staged.
30
31
np.random.seed(sum(map(ord, "whoami")))

080c30c2   Chunk   F5 lib updated. I...
32
33
package_dir = os.path.dirname(os.path.abspath(__file__))

2c2d57c7   Chunk   ILSVRC datapath h...
34
35

class DataILSVRC(DataDumperBase):
84648488   Chunk   reverted.
36
    def __init__(self, base_dir='/media/chunk/Elements/D/data/ImageNet/img/ILSVRC2013_DET_val', category='Train'):
2c2d57c7   Chunk   ILSVRC datapath h...
37
38
39
40
41
42
43
44
45
46
47
48
49
50
        DataDumperBase.__init__(self, base_dir, category)

        self.base_dir = base_dir
        self.category = category
        self.data_dir = os.path.join(self.base_dir, self.category)

        self.dst_dir = os.path.join(self.base_dir, 'dst', self.category)
        self.list_file = os.path.join(self.dst_dir, 'file-tag.tsv')
        self.feat_dir = os.path.join(self.dst_dir, 'Feat')
        self.img_dir = os.path.join(self.dst_dir, 'Img')

        self.dict_data = {}

        self.table_name = self.base_dir.strip('/').split('/')[-1] + '-' + self.category
02528074   Chunk   staged.
51
        self.sparker = None
2c2d57c7   Chunk   ILSVRC datapath h...
52
53

    def format(self):
f1fa5b17   Chunk   review & streaming.
54
        print "formatting..."
2c2d57c7   Chunk   ILSVRC datapath h...
55
56
57
58
59
        self.extract()

    def _hash_copy(self, image):
        if not image.endswith('jpg'):
            img = Image.open(image)
080c30c2   Chunk   F5 lib updated. I...
60
61
            img.save('../res/tmp.jpg', format='JPEG')
            image = '../res/tmp.jpg'
2c2d57c7   Chunk   ILSVRC datapath h...
62
63
64
65
66

        with open(image, 'rb') as f:
            index = md5(f.read()).hexdigest()

        im = Jpeg(image, key=sample_key)
84648488   Chunk   reverted.
67
        self.dict_data[index] = [im.image_width, im.image_height, im.image_width * im.image_height, im.getCapacity(),
9ff70cf4   Chunk   capacity engeneer...
68
                                 im.getQuality()]
d0be60e7   Chunk   jpeg update.
69
70

        # self.dict_data[index] = [im.image_width, im.image_height, os.path.getsize(image), im.getQuality()]
2c2d57c7   Chunk   ILSVRC datapath h...
71
72

        # origion:
1dc7c44b   Chunk   crawler-hbase-spa...
73
        # dir = base + 'Img/Train/' + index[:3]
2c2d57c7   Chunk   ILSVRC datapath h...
74
75
76
77
78
79
80
81
82
83
84
        dir = os.path.join(self.img_dir, index[:3])
        if not os.path.exists(dir):
            os.makedirs(dir)
        image_path = os.path.join(dir, index[3:] + '.jpg')
        # print image_path

        if not os.path.exists(image_path):
            shutil.copy(image, image_path)
        else:
            pass

554a7b9a   Chunk   staged.
85
    def get_feat(self, image, feattype='ibd', **kwargs):
84648488   Chunk   reverted.
86
87
88
89
90
        size = kwargs.get('size', (48, 48))

        if feattype == 'hog':
            feater = HOG.FeatHOG(size=size)
        elif feattype == 'ibd':
554a7b9a   Chunk   staged.
91
92
93
94
95
96
97
98
            feater = IntraBlockDiff.FeatIntraBlockDiff()
        else:
            raise Exception("Unknown feature type!")

        desc = feater.feat(image)

        return desc

84648488   Chunk   reverted.
99

554a7b9a   Chunk   staged.
100
    def extract_feat(self, feattype='ibd'):
f1fa5b17   Chunk   review & streaming.
101
        print "extracting feat..."
84648488   Chunk   reverted.
102
103
104
        if feattype == 'hog':
            feater = HOG.FeatHOG(size=(48, 48))
        elif feattype == 'ibd':
554a7b9a   Chunk   staged.
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
            feater = IntraBlockDiff.FeatIntraBlockDiff()
        else:
            raise Exception("Unknown feature type!")

        list_image = []
        with open(self.list_file, 'rb') as tsvfile:
            tsvfile = csv.reader(tsvfile, delimiter='\t')
            for line in tsvfile:
                list_image.append(line[0])

        dict_featbuf = {}
        for imgname in list_image:
            # if imgtag == 'True':
            image = os.path.join(self.img_dir, imgname[:3], imgname[3:] + '.jpg')
            desc = feater.feat(image)
            dict_featbuf[imgname] = desc

        for imgname, desc in dict_featbuf.items():
            # print imgname, desc
            dir = os.path.join(self.feat_dir, imgname[:3])
            if not os.path.exists(dir):
                os.makedirs(dir)
            featpath = os.path.join(dir, imgname[3:].split('.')[0] + '.' + feattype)
            with open(featpath, 'wb') as featfile:
                featfile.write(json.dumps(desc.tolist()))

080c30c2   Chunk   F5 lib updated. I...
131
132
133
134
    def _build_list(self, list_file=None):
        if list_file == None:
            list_file = self.list_file
        assert list_file != None
2c2d57c7   Chunk   ILSVRC datapath h...
135
136
137

        ordict_img = collections.OrderedDict(sorted(self.dict_data.items(), key=lambda d: d[0]))

080c30c2   Chunk   F5 lib updated. I...
138
        with open(list_file, 'w') as f:
2c2d57c7   Chunk   ILSVRC datapath h...
139
140
141
142
            tsvfile = csv.writer(f, delimiter='\t')
            for key, value in ordict_img.items():
                tsvfile.writerow([key] + value)

080c30c2   Chunk   F5 lib updated. I...
143
144
145
146
147
    def _anaylis(self, list_file=None):
        if list_file == None:
            list_file = self.list_file
        assert list_file != None

84648488   Chunk   reverted.
148
        df_ILS = pd.read_csv(list_file, names=['hash', 'width', 'height', 'size', 'capacity', 'quality'], sep='\t')
d1042d03   Chunk   staged.
149
        length = df_ILS.shape[0]
9ff70cf4   Chunk   capacity engeneer...
150
        df_ILS = df_ILS.sort(['capacity', 'size', 'quality'], ascending=True)
9371f8fa   Chunk   SVM param engenee...
151
        rand_class = stats.bernoulli.rvs(0.8, size=length)
d1042d03   Chunk   staged.
152

9ff70cf4   Chunk   capacity engeneer...
153
        df_ILS['rate'] = np.zeros(df_ILS.shape[0], np.float64)
d0be60e7   Chunk   jpeg update.
154
155
        df_ILS['chosen'] = rand_class
        df_ILS['class'] = np.zeros(length, np.int32)
d1042d03   Chunk   staged.
156

d0be60e7   Chunk   jpeg update.
157
        df_ILS.to_csv(list_file, header=False, index=False, sep='\t')
2c2d57c7   Chunk   ILSVRC datapath h...
158
159

    def extract(self):
f1fa5b17   Chunk   review & streaming.
160
        print "extracting data..."
2c2d57c7   Chunk   ILSVRC datapath h...
161
162
163
        for path, subdirs, files in os.walk(self.data_dir):
            for name in files:
                imagepath = os.path.join(path, name)
d1042d03   Chunk   staged.
164
165
166
167
168
                # print imagepath
                try:
                    self._hash_copy(imagepath)
                except:
                    pass
2c2d57c7   Chunk   ILSVRC datapath h...
169

d1042d03   Chunk   staged.
170
171
        self._build_list()
        self._anaylis()
2c2d57c7   Chunk   ILSVRC datapath h...
172

84648488   Chunk   reverted.
173

9ff70cf4   Chunk   capacity engeneer...
174
    def _embed_outer(self):
080c30c2   Chunk   F5 lib updated. I...
175
176
177
        self.dict_data = {}
        dict_embedresult = {}
        os.environ["CLASSPATH"] = os.path.join(package_dir, "../libs/F5/")
d0be60e7   Chunk   jpeg update.
178
        cmd = 'java Embed %s %s -e %s  -p password -c "stegan by chunk  " -q %d'
080c30c2   Chunk   F5 lib updated. I...
179

9ff70cf4   Chunk   capacity engeneer...
180
        df_ILS = pd.read_csv(self.list_file,
84648488   Chunk   reverted.
181
                             names=['hash', 'width', 'height', 'size', 'capacity', 'quality', 'chosen', 'class'],
080c30c2   Chunk   F5 lib updated. I...
182
                             sep='\t')
d0be60e7   Chunk   jpeg update.
183
        df_ILS_TARGET = df_ILS[df_ILS['chosen'] == 1]
9ff70cf4   Chunk   capacity engeneer...
184

84648488   Chunk   reverted.
185
        for hash, size, quality in zip(df_ILS_TARGET['hash'], df_ILS_TARGET['size'], df_ILS_TARGET['quality']):
d0be60e7   Chunk   jpeg update.
186
            path_img = os.path.join(self.img_dir, hash[:3], hash[3:] + '.jpg')
080c30c2   Chunk   F5 lib updated. I...
187
188
            if path_img:
                print path_img
84648488   Chunk   reverted.
189
                p = Popen(cmd % (path_img, 'res/tmp.jpg', 'res/toembed', quality), shell=True, stdout=PIPE,
9ff70cf4   Chunk   capacity engeneer...
190
                          stderr=STDOUT)
d0be60e7   Chunk   jpeg update.
191
                dict_embedresult[hash] = [line.strip('\n') for line in p.stdout.readlines()]
080c30c2   Chunk   F5 lib updated. I...
192
193
194
195
                try:
                    self._hash_copy('res/tmp.jpg')
                except:
                    pass
9ff70cf4   Chunk   capacity engeneer...
196

080c30c2   Chunk   F5 lib updated. I...
197
198
199
200
201
        with open(self.list_file + '.embed.log', 'wb') as f:
            tsvfile = csv.writer(f, delimiter='\t')
            for key, value in dict_embedresult.items():
                tsvfile.writerow([key] + value)

080c30c2   Chunk   F5 lib updated. I...
202
203
        self._build_list(self.list_file + '.embed')

d0be60e7   Chunk   jpeg update.
204
        # merge
84648488   Chunk   reverted.
205
        df_ILS_EMBED = pd.read_csv(self.list_file + '.embed', names=['hash', 'width', 'height', 'size', 'quality'],
d0be60e7   Chunk   jpeg update.
206
207
208
209
210
211
212
213
                                   sep='\t')
        length = df_ILS_EMBED.shape[0]
        df_ILS_EMBED = df_ILS_EMBED.sort(['size', 'quality'], ascending=True)
        df_ILS_EMBED['chosen'] = np.zeros(length, np.int32)
        df_ILS_EMBED['class'] = np.ones(length, np.int32)

        df_ILS = df_ILS.append(df_ILS_EMBED, ignore_index=True)
        df_ILS.to_csv(self.list_file, header=False, index=False, sep='\t')
080c30c2   Chunk   F5 lib updated. I...
214

9ff70cf4   Chunk   capacity engeneer...
215
216
217
218
219
    def _embed_inner(self, rate=None):
        self.dict_data = {}
        f5 = F5.F5(sample_key, 1)
        tmp_img = os.path.join(package_dir, '../res/tmp.jpg')
        df_ILS = pd.read_csv(self.list_file,
84648488   Chunk   reverted.
220
                             names=['hash', 'width', 'height', 'size', 'capacity', 'quality', 'rate', 'chosen',
9ff70cf4   Chunk   capacity engeneer...
221
222
223
224
225
226
227
228
229
                                    'class'],
                             sep='\t')
        df_ILS_TARGET = df_ILS[df_ILS['chosen'] == 1]

        for hash, capacity in zip(df_ILS_TARGET['hash'], df_ILS_TARGET['capacity']):
            path_img = os.path.join(self.img_dir, hash[:3], hash[3:] + '.jpg')
            if path_img:
                print path_img
                if rate == None:
84648488   Chunk   reverted.
230
                    embed_rate = f5.embed_raw_data(path_img, os.path.join(package_dir, '../res/toembed'), tmp_img)
9ff70cf4   Chunk   capacity engeneer...
231
232
                else:
                    assert (rate >= 0 and rate < 1)
9371f8fa   Chunk   SVM param engenee...
233
                    # print capacity
9ff70cf4   Chunk   capacity engeneer...
234
235
236
237
238
239
                    hidden = np.random.bytes(int(capacity * rate) / 8)
                    embed_rate = f5.embed_raw_data(path_img, hidden, tmp_img, frommem=True)
                try:
                    with open(tmp_img, 'rb') as f:
                        index = md5(f.read()).hexdigest()
                    im = Jpeg(tmp_img, key=sample_key)
84648488   Chunk   reverted.
240
                    self.dict_data[index] = [im.image_width, im.image_height, im.image_width * im.image_height,
9ff70cf4   Chunk   capacity engeneer...
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
                                             im.getCapacity(),
                                             im.getQuality(), embed_rate]

                    dir = os.path.join(self.img_dir, index[:3])
                    if not os.path.exists(dir):
                        os.makedirs(dir)
                    image_path = os.path.join(dir, index[3:] + '.jpg')
                    if not os.path.exists(image_path):
                        shutil.copy(tmp_img, image_path)
                    else:
                        pass
                except:
                    pass

        self._build_list(self.list_file + '.embed')

        # merge
        df_ILS_EMBED = pd.read_csv(self.list_file + '.embed',
84648488   Chunk   reverted.
259
                                   names=['hash', 'width', 'height', 'size', 'capacity', 'quality', 'rate'],
9ff70cf4   Chunk   capacity engeneer...
260
261
262
263
264
265
266
267
268
269
270
271
                                   sep='\t')

        df_ILS_EMBED = df_ILS_EMBED.sort(['rate', 'capacity', 'size', 'quality'], ascending=True)
        df_ILS_EMBED['chosen'] = np.zeros(df_ILS_EMBED.shape[0], np.int32)
        df_ILS_EMBED['class'] = np.ones(df_ILS_EMBED.shape[0], np.int32)

        # print df_ILS_EMBED.dtypes
        # print df_ILS.dtypes
        # Form the intersection of two Index objects. Sortedness of the result is not guaranteed
        df_ILS = df_ILS.append(df_ILS_EMBED, ignore_index=True)
        df_ILS.to_csv(self.list_file, header=False, index=False, sep='\t')

554a7b9a   Chunk   staged.
272
    def embed(self, rate=None):
f1fa5b17   Chunk   review & streaming.
273
        print "embedding data..."
9371f8fa   Chunk   SVM param engenee...
274
        self._embed_inner(rate)
9ff70cf4   Chunk   capacity engeneer...
275

84648488   Chunk   reverted.
276

ec755e37   Chunk   cropping.
277
    def crop(self, size=(300, 300)):
e6be6b61   Chunk   import caffe.
278
279
280
        cropped_dir = self.data_dir + '_crop_pil'
        if not os.path.exists(cropped_dir):
            os.makedirs(cropped_dir)
ec755e37   Chunk   cropping.
281
282
283
284
285
286
287
288
        for path, subdirs, files in os.walk(self.data_dir):
            for name in files:
                image = os.path.join(path, name)
                print image

                W, H = size
                try:
                    im = Image.open(image)
b9990e77   Chunk   staged.
289
                    qt = im.quantization
ec755e37   Chunk   cropping.
290
291
292
293
294
                    w, h = im.size
                    if w < W or h < H:
                        continue
                    left, upper = random.randint(0, w - W), random.randint(0, h - H)
                    im = im.crop((left, upper, left + W, upper + H))
e6be6b61   Chunk   import caffe.
295
                    im.save(os.path.join(cropped_dir, name), qtables=qt)
ec755e37   Chunk   cropping.
296
297
298
299
300
301
                except Exception as e:
                    print '[EXCPT]', e
                    pass

                    # try:
                    # img = cv2.imread(image, cv2.CV_LOAD_IMAGE_UNCHANGED)
b9990e77   Chunk   staged.
302
303
                    # h, w = img.shape[:2]
                    # if w < 300 or h < 300:
25c0c9c9   Chunk   feat.ravel()[[i*3...
304
                    # continue
e6be6b61   Chunk   import caffe.
305
                    # left, upper = random.randint(0, w - 300), random.randint(0, h - 300)
bde8352b   Chunk   shuffling.
306
307
                    # img_crop = img[upper:upper + 300, left:left + 300]
                    # cv2.imwrite(os.path.join(base_dir, category + '_crop_cv', name), img_crop)
ec755e37   Chunk   cropping.
308
                    # except Exception as e:
bde8352b   Chunk   shuffling.
309
                    # print '[EXCPT]', e
ec755e37   Chunk   cropping.
310
311
                    #     pass

84648488   Chunk   reverted.
312

2c2d57c7   Chunk   ILSVRC datapath h...
313
    def get_table(self):
f1fa5b17   Chunk   review & streaming.
314
        print "getting table..."
2c2d57c7   Chunk   ILSVRC datapath h...
315
316
317
318
319
320
321
322
323
        if self.table != None:
            return self.table

        if self.connection is None:
            c = happybase.Connection('HPC-server')
            self.connection = c

        tables = self.connection.tables()
        if self.table_name not in tables:
f4fb4381   Chunk   staged.
324
325
326
327
328
            families = {'cf_pic': dict(),
                        'cf_info': dict(max_versions=10),
                        'cf_tag': dict(),
                        'cf_feat': dict(),
                        }
2c2d57c7   Chunk   ILSVRC datapath h...
329
330
331
332
333
            self.connection.create_table(name=self.table_name, families=families)

        table = self.connection.table(name=self.table_name)

        self.table = table
51708346   Chunk   final experiments...
334

2c2d57c7   Chunk   ILSVRC datapath h...
335
336
337
338
339
340
341
        return table

    def delete_table(self, table_name=None, disable=True):
        print "deleting table..."
        if table_name == None:
            table_name = self.table_name

d47ae6ce   Chunk   staged.
342
        if self.connection is None:
f1fa5b17   Chunk   review & streaming.
343
            c = happybase.Connection('HPC-server')
d47ae6ce   Chunk   staged.
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
            self.connection = c

        tables = self.connection.tables()
        if table_name not in tables:
            return False
        else:
            try:
                self.connection.delete_table(table_name, disable)
            except:
                print 'Exception when deleting table.'
                raise
        return True

    def store_img(self):
        if self.table == None:
            self.table = self.get_table()

2c2d57c7   Chunk   ILSVRC datapath h...
361
        dict_databuf = {}
ad70caf6   Chunk   staged.
362

2c2d57c7   Chunk   ILSVRC datapath h...
363
364
365
366
367
368
369
370
371
        with open(self.list_file, 'rb') as tsvfile:
            tsvfile = csv.reader(tsvfile, delimiter='\t')
            for line in tsvfile:
                path_img = os.path.join(self.img_dir, line[0][:3], line[0][3:] + '.jpg')
                if path_img:
                    with open(path_img, 'rb') as fpic:
                        dict_databuf[line[0] + '.jpg'] = fpic.read()

        try:
24768a99   Chunk   mode 'hbase' fini...
372
            with self.table.batch(batch_size=2000) as b:
2c2d57c7   Chunk   ILSVRC datapath h...
373
374
375
376
                for imgname, imgdata in dict_databuf.items():
                    b.put(imgname, {'cf_pic:data': imgdata})
        except ValueError:
            raise
489c5608   Chunk   debugging...
377

2c2d57c7   Chunk   ILSVRC datapath h...
378
379
380
381

    def store_info(self, infotype='all'):
        if self.table == None:
            self.table = self.get_table()
2c2d57c7   Chunk   ILSVRC datapath h...
382

84648488   Chunk   reverted.
383
        dict_infobuf = {}
cb798a7f   Chunk   libs & scripts in...
384
385
386
387
388
389
390
391
392

        with open(self.list_file, 'rb') as tsvfile:
            tsvfile = csv.reader(tsvfile, delimiter='\t')
            for line in tsvfile:
                dict_infobuf[line[0] + '.jpg'] = line[1:-2]

        if infotype == 'all':
            try:
                with self.table.batch(batch_size=5000) as b:
080c30c2   Chunk   F5 lib updated. I...
393
                    for imgname, imginfo in dict_infobuf.items():
cb798a7f   Chunk   libs & scripts in...
394
395
396
397
398
399
                        b.put(imgname,
                              {'cf_info:width': imginfo[0], 'cf_info:height': imginfo[1], 'cf_info:size': imginfo[2],
                               'cf_info:capacity': imginfo[3],
                               'cf_info:quality': imginfo[4]})
            except ValueError:
                raise
84648488   Chunk   reverted.
400
        else:
554a7b9a   Chunk   staged.
401
402
            raise Exception("Unknown infotype!")

cb798a7f   Chunk   libs & scripts in...
403
404

    def store_tag(self, tagtype='all'):
cb798a7f   Chunk   libs & scripts in...
405
        if self.table == None:
080c30c2   Chunk   F5 lib updated. I...
406
            self.table = self.get_table()
cb798a7f   Chunk   libs & scripts in...
407

84648488   Chunk   reverted.
408
        dict_tagbuf = {}
080c30c2   Chunk   F5 lib updated. I...
409

2c2d57c7   Chunk   ILSVRC datapath h...
410
411
412
413
414
415
416
417
        with open(self.list_file, 'rb') as tsvfile:
            tsvfile = csv.reader(tsvfile, delimiter='\t')
            for line in tsvfile:
                dict_tagbuf[line[0] + '.jpg'] = line[-2:]

        if tagtype == 'all':
            try:
                with self.table.batch(batch_size=5000) as b:
080c30c2   Chunk   F5 lib updated. I...
418
                    for imgname, imgtag in dict_tagbuf.items():
2c2d57c7   Chunk   ILSVRC datapath h...
419
                        b.put(imgname, {'cf_tag:chosen': imgtag[0], 'cf_tag:class': imgtag[1]})
080c30c2   Chunk   F5 lib updated. I...
420
421
422
423
424
425
426
            except ValueError:
                raise
        else:
            raise Exception("Unknown tagtype!")


    def store_feat(self, feattype='ibd'):
080c30c2   Chunk   F5 lib updated. I...
427
428
        if self.table == None:
            self.table = self.get_table()
2c2d57c7   Chunk   ILSVRC datapath h...
429

84648488   Chunk   reverted.
430
        dict_featbuf = {}
2c2d57c7   Chunk   ILSVRC datapath h...
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
        for path, subdirs, files in os.walk(self.feat_dir):
            for name in files:
                featpath = os.path.join(path, name)
                # print featpath
                with open(featpath, 'rb') as featfile:
                    imgname = path.split('/')[-1] + name.replace('.' + feattype, '.jpg')
                    dict_featbuf[imgname] = featfile.read()

        try:
            with self.table.batch(batch_size=5000) as b:
                for imgname, featdesc in dict_featbuf.items():
                    b.put(imgname, {'cf_feat:' + feattype: featdesc})
        except ValueError:
            raise
            pass


    def load_data(self, mode='local', feattype='ibd', tagtype='class', shuffle=False):
        print "loading data..."
        INDEX = []
        X = []
84648488   Chunk   reverted.
452
        Y = []
bde8352b   Chunk   shuffling.
453

f1fa5b17   Chunk   review & streaming.
454
        if mode == "local":
2c2d57c7   Chunk   ILSVRC datapath h...
455
456
457
458
459
460

            dict_dataset = {}

            if feattype == 'coef':  # raw
                with open(self.list_file, 'rb') as tsvfile:
                    tsvfile = csv.reader(tsvfile, delimiter='\t')
d0be60e7   Chunk   jpeg update.
461
462
                    for line in tsvfile:
                        hash = line[0]
ec755e37   Chunk   cropping.
463
464
465
466
467
468
                        tag = line[-1]
                        image = os.path.join(self.img_dir, hash[:3], hash[3:] + '.jpg')
                        if image:
                            im = Jpeg(image, key=sample_key)
                            dict_dataset[hash] = (tag, im.getCoefMatrix(channel='Y'))

bbd2f705   Chunk   cropping.
469
                for tag, feat in dict_dataset.values():
ec755e37   Chunk   cropping.
470
471
                    feat.ravel()[[i * 200 + j for i in range(0, 200, 8) for j in range(0, 200, 8)]] = 0
                    feat = np.absolute(feat)
b9990e77   Chunk   staged.
472
473
474
                    feat = np.bitwise_and(feat, 1)
                    X.append(feat.ravel())
                    Y.append(int(tag))
84648488   Chunk   reverted.
475

bde8352b   Chunk   shuffling.
476
477
            else:
                with open(self.list_file, 'rb') as tsvfile:
e6be6b61   Chunk   import caffe.
478
                    tsvfile = csv.reader(tsvfile, delimiter='\t')
b9990e77   Chunk   staged.
479
                    for line in tsvfile:
ec755e37   Chunk   cropping.
480
481
482
483
484
485
486
487
488
489
490
                        hash = line[0]
                        tag = line[-1]
                        path_feat = os.path.join(self.feat_dir, hash[:3], hash[3:] + '.' + feattype)
                        if path_feat:
                            with open(path_feat, 'rb') as featfile:
                                dict_dataset[hash] = (tag, json.loads(featfile.read()))

                for tag, feat in dict_dataset.values():
                    # X.append([item for sublist in feat for subsublist in sublist for item in subsublist])
                    X.append(np.array(feat).ravel().tolist())
                    Y.append(int(tag))
d0be60e7   Chunk   jpeg update.
491

b9990e77   Chunk   staged.
492
493
494
495
        elif mode == "hbase":  # remote
            if self.table == None:
                self.table = self.get_table()

2c2d57c7   Chunk   ILSVRC datapath h...
496
            col_feat, col_tag = 'cf_feat:' + feattype, 'cf_tag:' + tagtype
ec755e37   Chunk   cropping.
497
            for key, data in self.table.scan(columns=[col_feat, col_tag]):
2c2d57c7   Chunk   ILSVRC datapath h...
498
499
500
501
502
                X.append(
                    [item for sublist in json.loads(data[col_feat]) for subsublist in sublist for item in subsublist])
                Y.append(int(data[col_tag]))

        elif mode == "spark":  # cluster
ec755e37   Chunk   cropping.
503
            if self.sparker == None:
84648488   Chunk   reverted.
504
                self.sparker = SC.Sparker(host='HPC-server', appname='ImageCV', master='spark://HPC-server:7077')
02528074   Chunk   staged.
505

2c2d57c7   Chunk   ILSVRC datapath h...
506
            result = self.sparker.read_hbase(self.table_name)  # result = {key:[feat,tag],...}
ec755e37   Chunk   cropping.
507
            for feat, tag in result:
02528074   Chunk   staged.
508
                X.append(feat)
84648488   Chunk   reverted.
509
                Y.append(tag)
2c2d57c7   Chunk   ILSVRC datapath h...
510

02528074   Chunk   staged.
511
        else:
2c2d57c7   Chunk   ILSVRC datapath h...
512
513
514
            raise Exception("Unknown mode!")

        if shuffle:
cb798a7f   Chunk   libs & scripts in...
515
            # shuffling
2c2d57c7   Chunk   ILSVRC datapath h...
516
517
518
            Z = zip(X, Y)
            np.random.shuffle(Z)
            return Z
bde8352b   Chunk   shuffling.
519
520

        return X, Y
2c2d57c7   Chunk   ILSVRC datapath h...

bde8352b   Chunk   shuffling.

84648488   Chunk   reverted.