Commit 92d488d8731a722a81487a5150ce7775941940ee
1 parent
7e755616
Exists in
master
.
Showing
1 changed file
with
380 additions
and
0 deletions
 
Show diff stats
| ... | ... | @@ -0,0 +1,380 @@ | 
| 1 | +__author__ = 'chunk' | |
| 2 | + | |
| 3 | +import os | |
| 4 | +import numpy as np | |
| 5 | +from numpy.random import randn | |
| 6 | +import pandas as pd | |
| 7 | +from scipy import stats | |
| 8 | +import matplotlib as mpl | |
| 9 | +import matplotlib.pyplot as plt | |
| 10 | +import seaborn as sns | |
| 11 | + | |
| 12 | +import numpy as np | |
| 13 | +import matplotlib.pyplot as plt | |
| 14 | +import seaborn as sns | |
| 15 | +from .. import mjpeg | |
| 16 | +from ..mjpeg import base | |
| 17 | +from ..msteg.steganography import LSB, F3, F4, F5 | |
| 18 | + | |
| 19 | +np.random.seed(sum(map(ord, "whoami"))) | |
| 20 | + | |
| 21 | +sample_key = [46812L, 20559L, 31360L, 16681L, 27536L, 39553L, 5427L, 63029L, 56572L, 36476L, 25695L, | |
| 22 | + 61908L, 63014L, 5908L, 59816L, 56765L] | |
| 23 | + | |
| 24 | +# plt.ticklabel_format(style='sci', axis='both', scilimits=(0, 0)) | |
| 25 | +plt.ticklabel_format(style='sci', axis='both') | |
| 26 | + | |
| 27 | +package_dir = os.path.dirname(os.path.abspath(__file__)) | |
| 28 | + | |
| 29 | + | |
| 30 | +def anal_ILSVRC(): | |
| 31 | + df_ILS = pd.read_csv('../res/file-tag.tsv', | |
| 32 | + names=['hash', 'width', 'height', 'size', 'quality'], sep='\t') | |
| 33 | + print df_ILS[df_ILS.size < 2000000] | |
| 34 | + print df_ILS.describe() | |
| 35 | + # df_ILS.boxplot(column='size') | |
| 36 | + # plt.show() | |
| 37 | + | |
| 38 | + length = df_ILS.shape[0] | |
| 39 | + | |
| 40 | + # print type(df_ILS.size.order()) # <class 'pandas.core.series.Series'> | |
| 41 | + print df_ILS.size.order().iloc[map(lambda x: x * length, [1.0 / 3, 2.0 / 3, 0.9999])] | |
| 42 | + """ | |
| 43 | + 7082 108514 | |
| 44 | + 3826 150389 | |
| 45 | + 8761 4814541 | |
| 46 | + """ | |
| 47 | + | |
| 48 | + print df_ILS.size[df_ILS.size <= 102400].count() | |
| 49 | + print df_ILS.size[(df_ILS['size'] > 102400) & (df_ILS['size'] <= 153600)].count() | |
| 50 | + print df_ILS.size[df_ILS.size > 153600].count() | |
| 51 | + | |
| 52 | + """ | |
| 53 | + (-,100K,150K,+): | |
| 54 | + 4519 | |
| 55 | + 6163 | |
| 56 | + 4831 | |
| 57 | + (-,100K,500K,+): | |
| 58 | + 4519 | |
| 59 | + 10932 | |
| 60 | + 62 | |
| 61 | + """ | |
| 62 | + | |
| 63 | + ## Quality | |
| 64 | + print df_ILS.quality.order().iloc[map(lambda x: x * length, [1.0 / 3, 2.0 / 3, 0.9999])] | |
| 65 | + """ | |
| 66 | + 13507 96 | |
| 67 | + 831 96 | |
| 68 | + 6529 100 | |
| 69 | + """ | |
| 70 | + df_new = df_ILS.sort(['size', 'quality'], ascending=True) | |
| 71 | + print df_new | |
| 72 | + | |
| 73 | + rand_class = stats.bernoulli.rvs(0.3, size=length) | |
| 74 | + # df_new['class'] = pd.Series(rand_class, index=df_new.index) | |
| 75 | + df_new['class'] = rand_class | |
| 76 | + | |
| 77 | + print rand_class[:100] | |
| 78 | + print df_new | |
| 79 | + | |
| 80 | + df_new.to_csv('../res/test.tsv', header=False, index=False, sep='\t') | |
| 81 | + | |
| 82 | + | |
| 83 | +def anal_ILSVRC_Test(): | |
| 84 | + df_ILS_T = pd.read_csv('../res/file-tag-test.tsv', | |
| 85 | + names=['hash', 'width', 'height', 'size', 'quality', 'class'], sep='\t') | |
| 86 | + print df_ILS_T | |
| 87 | + print df_ILS_T.size.describe() | |
| 88 | + | |
| 89 | + print df_ILS_T.size[df_ILS_T.size <= 102400].count() | |
| 90 | + print df_ILS_T.size[(df_ILS_T['size'] > 102400) & (df_ILS_T['size'] <= 153600)].count() | |
| 91 | + print df_ILS_T.size[df_ILS_T.size > 153600].count() | |
| 92 | + | |
| 93 | + length = df_ILS_T.shape[0] | |
| 94 | + df_ILS_T['class2'] = np.zeros(length, np.int32) | |
| 95 | + df_ILS_T.to_csv('../res/file-tag-test.tsv', header=False, index=False, sep='\t') | |
| 96 | + | |
| 97 | + | |
| 98 | +def anal_0000(): | |
| 99 | + df_ILS = pd.read_csv(os.path.join(package_dir, '../res/file-tag-test.tsv'), | |
| 100 | + names=['hash', 'width', 'height', 'size', 'quality', 'chosen', 'class'], | |
| 101 | + sep='\t') | |
| 102 | + length = df_ILS.shape[0] | |
| 103 | + print df_ILS.size.describe() | |
| 104 | + print df_ILS.size.order().iloc[map(lambda x: x * length, [1.0 / 3, 2.0 / 3, 0.9999])] | |
| 105 | + | |
| 106 | + print df_ILS.size[df_ILS.size == 166500].count() / 4592.0 | |
| 107 | + print df_ILS.size[df_ILS.size == 187500].count() / 4592.0 | |
| 108 | + print df_ILS.size[df_ILS.size == 250000].count() / 4592.0 | |
| 109 | + | |
| 110 | + print df_ILS.size[df_ILS.size <= 166500].count() | |
| 111 | + print df_ILS.size[(df_ILS['size'] > 166500) & (df_ILS['size'] <= 187500)].count() | |
| 112 | + print df_ILS.size[df_ILS.size > 187500].count() | |
| 113 | + | |
| 114 | + plt.ticklabel_format(style='sci', axis='both') | |
| 115 | + df_ILS.hist(column='size', bins=100) | |
| 116 | + plt.title('') | |
| 117 | + plt.xlabel("Image size") | |
| 118 | + plt.ylabel("Frequency") | |
| 119 | + plt.show() | |
| 120 | + | |
| 121 | + | |
| 122 | +def pre_crop(): | |
| 123 | + df_ILS = pd.read_csv(os.path.join(package_dir, '../res/file-tag-test.tsv'), | |
| 124 | + names=['hash', 'width', 'height', 'size', 'quality', 'chosen', 'class'], | |
| 125 | + sep='\t') | |
| 126 | + print df_ILS.shape | |
| 127 | + print df_ILS[(df_ILS['width'] >= 300) & (df_ILS['height'] >= 300)].shape | |
| 128 | + | |
| 129 | + # 300x300 4213 0.917 * | |
| 130 | + # 200x200 4534 0.987 | |
| 131 | + # 400x400 932 0.202 | |
| 132 | + | |
| 133 | + | |
| 134 | +def plot_hist(): | |
| 135 | + dat_performance = np.array([ | |
| 136 | + [100, 0.583396, 30.847788, 57.884814, 89.315998, 1.471087, 29.364628, 9.114235, 10.585322, | |
| 137 | + 39.94995, 2.235697366], | |
| 138 | + [200, 1.147411, 62.815709, 118.217859, 182.180979, 3.008692, 37.920278, 19.589578, 22.59827, | |
| 139 | + 60.518548, 3.010332948], | |
| 140 | + [500, 2.763806, 162.806317, 299.778606, 465.348729, 6.81705, 88.291989, 73.446282, | |
| 141 | + 80.263332, 168.555321, 2.760807112], | |
| 142 | + [1000, 6.372794, 329.023151, 600.438977, 935.834922, 15.644418, 159.951099, 186.335413, | |
| 143 | + 201.979831, 361.93093, 2.585672692], | |
| 144 | + [2000, 14.960961, 679.357936, 1256.341536, 1950.660433, 31.699596, 313.154748, 387.063702, | |
| 145 | + 418.763298, 731.918046, 2.665135043], | |
| 146 | + [5000, 39.880657, 1652.537536, 3067.98039, 4760.398583, 73.070203, 694.454719, 898.458633, | |
| 147 | + 971.528836, 1665.983555, 2.857410308]]) | |
| 148 | + | |
| 149 | + dat_performance = np.transpose(dat_performance) | |
| 150 | + data_size, serial_tot, spark_io, spark_proc, spark_tot = dat_performance[0], dat_performance[4], \ | |
| 151 | + dat_performance[8], dat_performance[6], \ | |
| 152 | + dat_performance[9] | |
| 153 | + | |
| 154 | + data_size = data_size.astype(int) | |
| 155 | + A = [spark_io, spark_proc] | |
| 156 | + E = np.arange(len(data_size)) | |
| 157 | + bar_width = 0.5 | |
| 158 | + # plt.bar(E, spark_io, width=bar_width) | |
| 159 | + # plt.bar(E, spark_proc, color='#e74c3c', width=bar_width, bottom=spark_io) | |
| 160 | + # plt.xlabel("Data size") | |
| 161 | + # plt.ylabel("Time(s)") | |
| 162 | + # plt.xticks(E + bar_width / 2, data_size) | |
| 163 | + # # plt.xticks(range(len(data_size)), data_size, size='small') | |
| 164 | + # # plt.ylim(ymax=300000) | |
| 165 | + # plt.show() | |
| 166 | + | |
| 167 | + # mpl.rcParams.update({'font.size': 5}) | |
| 168 | + | |
| 169 | + fig, ax = plt.subplots() | |
| 170 | + rects1 = ax.bar(E, spark_io, bar_width) | |
| 171 | + rects2 = ax.bar(E, spark_proc, bar_width, color='#e74c3c', bottom=spark_io) | |
| 172 | + | |
| 173 | + # add some text for labels, title and axes ticks | |
| 174 | + plt.xlabel("Data size") | |
| 175 | + ax.set_ylabel('Time(s)') | |
| 176 | + # ax.set_title('IO ratio') | |
| 177 | + ax.set_xticks(E + bar_width / 2) | |
| 178 | + ax.set_xticklabels(data_size) | |
| 179 | + | |
| 180 | + ax.legend((rects1[0], rects2[0]), ('IO', 'CPU'), loc=2) | |
| 181 | + | |
| 182 | + height1 = [rect.get_height() for rect in rects1] | |
| 183 | + height2 = [rect.get_height() for rect in rects2] | |
| 184 | + for i in range(len(rects1)): | |
| 185 | + height = rects1[i].get_height() + rects2[i].get_height() | |
| 186 | + ax.text(rects1[i].get_x() + rects1[i].get_width() / 2, 1.005 * height, '%d%%' % | |
| 187 | + int((100 * 1.0*height1[i]/height)), | |
| 188 | + ha='center', va='bottom') | |
| 189 | + | |
| 190 | + # height1 = [rect.get_height() for rect in rects1] | |
| 191 | + # height2 = [rect.get_height() for rect in rects2] | |
| 192 | + # for i in range(len(rects1)): | |
| 193 | + # ax.text(rects1[i].get_x() + rects1[i].get_width() / 2, 0.5 * height1[i], '%f' % (0.1 * | |
| 194 | + # height1[ | |
| 195 | + # i] / | |
| 196 | + # height2[ | |
| 197 | + # i]), | |
| 198 | + # ha='center', va='bottom') | |
| 199 | + | |
| 200 | + | |
| 201 | + plt.show() | |
| 202 | + | |
| 203 | + | |
| 204 | +def plot_line_performance(): | |
| 205 | + # performance | |
| 206 | + dat_performance = np.array([ | |
| 207 | + [100, 0.583396, 30.847788, 57.884814, 89.315998, 1.471087, 29.364628, 9.114235, 10.585322, | |
| 208 | + 39.94995, 2.235697366], | |
| 209 | + [200, 1.147411, 62.815709, 118.217859, 182.180979, 3.008692, 37.920278, 19.589578, 22.59827, | |
| 210 | + 60.518548, 3.010332948], | |
| 211 | + [500, 2.763806, 162.806317, 299.778606, 465.348729, 6.81705, 88.291989, 73.446282, | |
| 212 | + 80.263332, 168.555321, 2.760807112], | |
| 213 | + [1000, 6.372794, 329.023151, 600.438977, 935.834922, 15.644418, 159.951099, 186.335413, | |
| 214 | + 201.979831, 361.93093, 2.585672692], | |
| 215 | + [2000, 14.960961, 679.357936, 1256.341536, 1950.660433, 31.699596, 313.154748, 387.063702, | |
| 216 | + 418.763298, 731.918046, 2.665135043], | |
| 217 | + [5000, 39.880657, 1652.537536, 3067.98039, 4760.398583, 73.070203, 694.454719, 898.458633, | |
| 218 | + 971.528836, 1665.983555, 2.857410308]]) | |
| 219 | + | |
| 220 | + dat_performance = np.transpose(dat_performance) | |
| 221 | + data_size, serial_tot, spark_io, spark_proc, spark_tot = dat_performance[0], dat_performance[4], \ | |
| 222 | + dat_performance[8], dat_performance[6], \ | |
| 223 | + dat_performance[9] | |
| 224 | + | |
| 225 | + # sns.set_style("white") | |
| 226 | + # data_size = data_size.astype(int) | |
| 227 | + # plt.plot(range(len(data_size)), serial_tot, marker='o', label='serial total') | |
| 228 | + # plt.plot(range(len(data_size)), spark_tot, marker='o', linestyle='--', label='spark total') | |
| 229 | + # plt.plot(range(len(data_size)), spark_io, marker='o', linestyle=':', label='spark io') | |
| 230 | + # plt.plot(range(len(data_size)), spark_proc, marker='o', linestyle='-.', label='spark proc') | |
| 231 | + # plt.xlabel("Data size") | |
| 232 | + # plt.ylabel("Time(s)") | |
| 233 | + # plt.xticks(range(len(data_size)), data_size, size='small') | |
| 234 | + # plt.legend(loc=2) | |
| 235 | + # plt.show() | |
| 236 | + | |
| 237 | + plt.plot(data_size, serial_tot, marker='o', label='serial total') | |
| 238 | + plt.plot(data_size, spark_tot, marker='o', linestyle='--', label='spark total') | |
| 239 | + plt.plot(data_size, spark_io, marker='o', linestyle=':', label='spark io') | |
| 240 | + plt.plot(data_size, spark_proc, marker='o', linestyle='-.', label='spark proc') | |
| 241 | + plt.xlabel("Data size") | |
| 242 | + plt.ylabel("Time(s)") | |
| 243 | + plt.legend(loc=2) | |
| 244 | + plt.show() | |
| 245 | + | |
| 246 | + | |
| 247 | +def plot_line_io(): | |
| 248 | + # io | |
| 249 | + dat_io = np.array([ | |
| 250 | + [100, 10.585322, 29.364628, 39.94995, 10.286684, 27.079774, 37.366458, 49.995647, | |
| 251 | + 55.280739], | |
| 252 | + [200, 22.59827, 37.920278, 60.518548, 22.731275, 38.491461, 61.222736, 76.258928, | |
| 253 | + 83.836657], | |
| 254 | + [500, 80.263332, 88.291989, 168.555321, 64.610839, 88.241193, 152.852032, 177.039349, | |
| 255 | + 143.524813], | |
| 256 | + [1000, 201.979831, 159.951099, 361.93093, 172.359455, 158.694248, 331.053703, 467.126756, | |
| 257 | + 315.578952], | |
| 258 | + [2000, 418.763298, 313.154748, 731.918046, 390.990209, 313.085707, 704.075916, 802.138669, | |
| 259 | + 734.133909], | |
| 260 | + [5000, 971.528836, 694.454719, 1665.983555, 898.468232, 717.603061, 1616.071293, | |
| 261 | + 1860.610954, 1677.044038]]) | |
| 262 | + | |
| 263 | + dat_io = np.transpose(dat_io) | |
| 264 | + data_size, happybase_uncomp_io, happybase_uncomp_cpu, happybase_uncomp_tot, happybase_comp_io, happybase_comp_cpu, happybase_comp_tot, dist_uncomp, dist_comp = dat_io | |
| 265 | + # data_size = data_size.astype(int) | |
| 266 | + # plt.plot(range(len(data_size)), dist_uncomp, marker='o', label='dist-uncompressed total') | |
| 267 | + # plt.plot(range(len(data_size)), dist_comp, marker='o', label='dist-compressed total') | |
| 268 | + # plt.plot(range(len(data_size)), happybase_uncomp_tot, marker='o', label='happybase-uncompressed total') | |
| 269 | + # plt.plot(range(len(data_size)), happybase_comp_tot, marker='o', label='happybase-compressed total') | |
| 270 | + # | |
| 271 | + # plt.plot(range(len(data_size)), happybase_uncomp_io, marker='o', linestyle='--', | |
| 272 | + # label='happybase-uncompressed io') | |
| 273 | + # plt.plot(range(len(data_size)), happybase_comp_io, marker='o', linestyle='--', | |
| 274 | + # label='happybase-compressed io') | |
| 275 | + # plt.plot(range(len(data_size)), happybase_uncomp_cpu, marker='o', linestyle='--', | |
| 276 | + # label='happybase-uncompressed cpu') | |
| 277 | + # plt.plot(range(len(data_size)), happybase_comp_cpu, marker='o', linestyle='--', | |
| 278 | + # label='happybase-compressed cpu') | |
| 279 | + # | |
| 280 | + # plt.xlabel("Data size") | |
| 281 | + # plt.ylabel("Time") | |
| 282 | + # plt.xticks(range(len(data_size)), data_size, size='small') | |
| 283 | + # plt.legend(loc=2) | |
| 284 | + # plt.show() | |
| 285 | + | |
| 286 | + plt.plot(data_size, dist_uncomp, marker='o', label='dist-uncompressed total') | |
| 287 | + plt.plot(data_size, dist_comp, marker='D', label='dist-compressed total') | |
| 288 | + plt.plot(data_size, happybase_uncomp_tot, marker='o', label='happybase-uncompressed total') | |
| 289 | + plt.plot(data_size, happybase_comp_tot, marker='D', label='happybase-compressed total') | |
| 290 | + | |
| 291 | + plt.plot(data_size, happybase_uncomp_io, marker='o', linestyle='--', | |
| 292 | + label='happybase-uncompressed io') | |
| 293 | + plt.plot(data_size, happybase_comp_io, marker='D', linestyle='--', | |
| 294 | + label='happybase-compressed io') | |
| 295 | + plt.plot(data_size, happybase_uncomp_cpu, marker='o', linestyle='--', | |
| 296 | + label='happybase-uncompressed cpu') | |
| 297 | + plt.plot(data_size, happybase_comp_cpu, marker='D', linestyle='--', | |
| 298 | + label='happybase-compressed cpu') | |
| 299 | + | |
| 300 | + plt.xlabel("Data size") | |
| 301 | + plt.ylabel("Time") | |
| 302 | + plt.legend(loc=2) | |
| 303 | + plt.show() | |
| 304 | + | |
| 305 | + | |
| 306 | + # plt.subplot(2, 2, 1) | |
| 307 | + # plt.plot(data_size, dist_uncomp, marker='o', label='dist-uncompressed total') | |
| 308 | + # plt.plot(data_size, dist_comp, marker='o', label='dist-compressed total') | |
| 309 | + # # plt.title('Performance with(out) Compression') | |
| 310 | + # plt.ylabel("Time") | |
| 311 | + # plt.legend(loc=2) | |
| 312 | + # | |
| 313 | + # plt.subplot(2, 2, 2) | |
| 314 | + # plt.plot(data_size, happybase_uncomp_tot, marker='o', label='happybase-uncompressed total') | |
| 315 | + # plt.plot(data_size, happybase_comp_tot, marker='o', label='happybase-compressed total') | |
| 316 | + # plt.legend(loc=2) | |
| 317 | + # | |
| 318 | + # plt.subplot(2, 2, 3) | |
| 319 | + # plt.plot(data_size, happybase_uncomp_io, marker='o', linestyle='--', | |
| 320 | + # label='happybase-uncompressed io') | |
| 321 | + # plt.plot(data_size, happybase_comp_io, marker='o', linestyle='--', | |
| 322 | + # label='happybase-compressed io') | |
| 323 | + # plt.ylabel("Time") | |
| 324 | + # plt.xlabel("Data size") | |
| 325 | + # plt.legend(loc=2) | |
| 326 | + # | |
| 327 | + # plt.subplot(2, 2, 4) | |
| 328 | + # plt.plot(data_size, happybase_uncomp_cpu, marker='o', linestyle='--', | |
| 329 | + # label='happybase-uncompressed cpu') | |
| 330 | + # plt.plot(data_size, happybase_comp_cpu, marker='o', linestyle='--', | |
| 331 | + # label='happybase-compressed cpu') | |
| 332 | + # plt.xlabel("Data size") | |
| 333 | + # plt.legend(loc=2) | |
| 334 | + # plt.show() | |
| 335 | + | |
| 336 | + # plt.plot(data_size, dist_uncomp, marker='o', label='dist-uncompressed total') | |
| 337 | + # plt.plot(data_size, dist_comp, marker='D', linestyle='--',label='dist-compressed total') | |
| 338 | + # plt.xlabel("Data size") | |
| 339 | + # plt.ylabel("Time(s)") | |
| 340 | + # plt.legend(loc=2) | |
| 341 | + # plt.show() | |
| 342 | + # | |
| 343 | + # plt.plot(data_size, happybase_uncomp_tot, marker='o', label='happybase-uncompressed total') | |
| 344 | + # plt.plot(data_size, happybase_comp_tot, marker='D', linestyle='--',label='happybase-compressed total') | |
| 345 | + # plt.xlabel("Data size") | |
| 346 | + # plt.ylabel("Time(s)") | |
| 347 | + # plt.legend(loc=2) | |
| 348 | + # plt.show() | |
| 349 | + # | |
| 350 | + # plt.plot(data_size, happybase_uncomp_io, marker='o', | |
| 351 | + # label='happybase-uncompressed io') | |
| 352 | + # plt.plot(data_size, happybase_comp_io, marker='D', linestyle='--', | |
| 353 | + # label='happybase-compressed io') | |
| 354 | + # plt.xlabel("Data size") | |
| 355 | + # plt.ylabel("Time(s)") | |
| 356 | + # plt.legend(loc=2) | |
| 357 | + # plt.show() | |
| 358 | + # | |
| 359 | + # plt.plot(data_size, happybase_uncomp_cpu, marker='o', | |
| 360 | + # label='happybase-uncompressed cpu') | |
| 361 | + # plt.plot(data_size, happybase_comp_cpu, marker='D', linestyle='--', | |
| 362 | + # label='happybase-compressed cpu') | |
| 363 | + # | |
| 364 | + # plt.xlabel("Data size") | |
| 365 | + # plt.ylabel("Time(s)") | |
| 366 | + # plt.legend(loc=2) | |
| 367 | + # plt.show() | |
| 368 | + | |
| 369 | + | |
| 370 | +if __name__ == '__main__': | |
| 371 | + # anal_ILSVRC() | |
| 372 | + # anal_ILSVRC_Test() | |
| 373 | + # anal_0000() | |
| 374 | + # print timeit.timeit("anal_ILSVRC()", setup="from __main__ import anal_ILSVRC", number=1) | |
| 375 | + | |
| 376 | + | |
| 377 | + # pre_crop() | |
| 378 | + # plot_line() | |
| 379 | + anal_0000() | |
| 380 | + pass | ... | ... |