Commit 0c3afaf24c3c02fde5a39c38b200eb9e5c80aeda
1 parent
f2bebe34
Exists in
refactor
staged.
Showing
4 changed files
with
4 additions
and
477 deletions
Show diff stats
mjpeg/__init__.py
| ... | ... | @@ -8,7 +8,8 @@ __all__ = ['Jpeg', 'colorMap', 'diffblock', 'diffblocks'] |
| 8 | 8 | # functions from submodules. |
| 9 | 9 | # |
| 10 | 10 | # :: |
| 11 | - | |
| 11 | +import numpy as np | |
| 12 | +from numpy import shape | |
| 12 | 13 | import numpy.random as rnd |
| 13 | 14 | |
| 14 | 15 | import base |
| ... | ... | @@ -169,18 +170,6 @@ class Jpeg(Jsteg): |
| 169 | 170 | E = [-np.inf] + [i for i in range(-T, T + 2)] + [np.inf] |
| 170 | 171 | return np.histogram(A, E) |
| 171 | 172 | |
| 172 | - def plotHist(self, mask=base.acMaskBlock, T=8): | |
| 173 | - """ | |
| 174 | - Make a histogram of the jpeg coefficients. | |
| 175 | - The mask is a boolean 8x8 matrix indicating the | |
| 176 | - frequencies to be included. This defaults to the | |
| 177 | - AC coefficients. | |
| 178 | - """ | |
| 179 | - A = self.rawsignal(mask).tolist() | |
| 180 | - E = [i for i in range(-T, T + 2)] | |
| 181 | - plt.hist(A, E, histtype='bar') | |
| 182 | - plt.show() | |
| 183 | - | |
| 184 | 173 | def nzcount(self, *a, **kw): |
| 185 | 174 | """Number of non-zero AC coefficients. |
| 186 | 175 | ... | ... |
mjpeg/compress.py
msteg/steganalysis/ChiSquare.py
| ... | ... | @@ -1,162 +0,0 @@ |
| 1 | -""" | |
| 2 | -<p> | |
| 3 | -This module implements an algorithm described by Andreas Westfeld in [1,2], | |
| 4 | -which detects if there was data embedded into an image using JSteg. | |
| 5 | -It uses the property that JSteg generates pairs of values in the | |
| 6 | -DCT-coefficients histogram, which can be detected by a \chi^2 test. | |
| 7 | -</p> | |
| 8 | - | |
| 9 | -<pre> | |
| 10 | -[1]: Andreas Westfeld, F5 - A Steganographic Algorithm High Capacity Despite | |
| 11 | -Better Steganalysis | |
| 12 | -[2]: Andreas Westfeld, Angriffe auf steganographische Systeme | |
| 13 | -</pre> | |
| 14 | -""" | |
| 15 | - | |
| 16 | -from collections import defaultdict | |
| 17 | -import os | |
| 18 | - | |
| 19 | -from PIL import Image | |
| 20 | -import numpy | |
| 21 | -from scipy.stats import chisquare | |
| 22 | -import matplotlib.pyplot as plt | |
| 23 | -import itertools as it | |
| 24 | - | |
| 25 | -from .. import * | |
| 26 | - | |
| 27 | - | |
| 28 | -class ChiSquare(StegBase): | |
| 29 | - """ | |
| 30 | - The module contains only one method, <b>detect</b>. | |
| 31 | - """ | |
| 32 | - | |
| 33 | - def __init__(self, ui, core): | |
| 34 | - self.ui = ui | |
| 35 | - self.core = core | |
| 36 | - | |
| 37 | - def detect(self, src, tgt, tgt2): | |
| 38 | - """ | |
| 39 | - <p> | |
| 40 | - Detect if there was data embedded in the <i>source image</i> image with | |
| 41 | - JSteg algorithm. | |
| 42 | - </p> | |
| 43 | - | |
| 44 | - <p> | |
| 45 | - Parameters: | |
| 46 | - <ol> | |
| 47 | - <li><pre>Source image</pre> Image which should be tested</li> | |
| 48 | - <li><pre>Target image</pre> Image which displays a graphic with the | |
| 49 | - embedding probability</li> | |
| 50 | - <li><pre>2nd Target image</pre> Image which displays the embedding | |
| 51 | - positions in the image</li> | |
| 52 | - </ol> | |
| 53 | - </p> | |
| 54 | - """ | |
| 55 | - # --------------------------- Input ----------------------------------- | |
| 56 | - # If src is from the image pool, test whether the image exists encoded | |
| 57 | - # on the file system. Otherwise we can not read DCT-coefficients. | |
| 58 | - if self.core.media_manager.is_media_key(src): | |
| 59 | - src = self.core.media_manager.get_file(src) | |
| 60 | - if hasattr(src, 'tmp_file'): | |
| 61 | - src = src.tmp_file | |
| 62 | - self.ui.display_error('Trying file: %s' % src) | |
| 63 | - else: | |
| 64 | - self.ui.display_error('Can not detect anything from \ | |
| 65 | - decoded images.') | |
| 66 | - return | |
| 67 | - # Test whether the file exists. | |
| 68 | - if not os.path.isfile(src): | |
| 69 | - self.ui.display_error('No such file.') | |
| 70 | - return | |
| 71 | - # Test if it is a JPEG file. | |
| 72 | - if not self._looks_like_jpeg(src): | |
| 73 | - self.ui.display_error('Input is probably not a JPEG file.') | |
| 74 | - return | |
| 75 | - | |
| 76 | - # ---------------------------- Algorithm ------------------------------ | |
| 77 | - # Build DCT-histogram in steps of \approx 1% of all coefficients and | |
| 78 | - # calculate the p-value at each step. | |
| 79 | - | |
| 80 | - # dct_data = rw_dct.read_dct_coefficients(src) | |
| 81 | - dct_data = self._get_cov_data(src) | |
| 82 | - | |
| 83 | - hist = defaultdict(int) | |
| 84 | - cnt = 0 | |
| 85 | - l = len(dct_data) | |
| 86 | - one_p = l / 100 | |
| 87 | - result = [] | |
| 88 | - for block in dct_data: | |
| 89 | - # update the histogram with one block of 64 coefficients | |
| 90 | - for c in block: | |
| 91 | - hist[c] += 1 | |
| 92 | - | |
| 93 | - cnt += 1 | |
| 94 | - if not cnt % one_p: | |
| 95 | - # calculate p-value | |
| 96 | - self.ui.set_progress(cnt * 100 / l) | |
| 97 | - | |
| 98 | - # ignore the pair (0, 1), since JSteg does not embed data there | |
| 99 | - hl = [hist[i] for i in range(-2048, 2049) if not i in (0, 1)] | |
| 100 | - k = len(hl) / 2 | |
| 101 | - observed = [] | |
| 102 | - expected = [] | |
| 103 | - # calculate observed and expected distribution | |
| 104 | - for i in range(k): | |
| 105 | - t = hl[2 * i] + hl[2 * i + 1] | |
| 106 | - if t > 3: | |
| 107 | - observed.append(hl[2 * i]) | |
| 108 | - expected.append(t / 2) | |
| 109 | - # calculate (\chi^2, p) | |
| 110 | - p = chisquare(numpy.array(observed), numpy.array(expected))[1] | |
| 111 | - result.append(p) | |
| 112 | - | |
| 113 | - # ----------------------------- Output -------------------------------- | |
| 114 | - # Graph displaying the embedding probabilities in relation to the | |
| 115 | - # sample size. | |
| 116 | - figure = plt.figure() | |
| 117 | - plot = figure.add_subplot(111) | |
| 118 | - plot.grid(True) | |
| 119 | - plot.plot(result, color='r', linewidth=2.0) | |
| 120 | - plt.axis([0, 100, 0, 1.1]) | |
| 121 | - plt.title('Embedding probability for different percentages \ | |
| 122 | -of the file capacity.') | |
| 123 | - plt.xlabel('% of file capacity') | |
| 124 | - plt.ylabel('Embedding probability') | |
| 125 | - | |
| 126 | - if self.core.media_manager.is_media_key(tgt): | |
| 127 | - img = figure_to_pil(figure) | |
| 128 | - self.core.media_manager.put_media(tgt, img) | |
| 129 | - else: | |
| 130 | - plt.savefig(tgt) | |
| 131 | - | |
| 132 | - # Image displaying the length and position of the embedded data | |
| 133 | - # within the image | |
| 134 | - img2 = Image.open(src) | |
| 135 | - img2.convert("RGB") | |
| 136 | - width, height = img2.size | |
| 137 | - | |
| 138 | - for i in range(100): | |
| 139 | - result[i] = max(result[i:]) | |
| 140 | - | |
| 141 | - cnt2 = 0 | |
| 142 | - for (top, left) in it.product(range(0, height, 8), range(0, width, 8)): | |
| 143 | - if not cnt2 % one_p: | |
| 144 | - r = result[cnt2 / one_p] | |
| 145 | - if r >= 0.5: | |
| 146 | - color = (255, int((1 - r) * 2 * 255), 0) | |
| 147 | - else: | |
| 148 | - color = (int(r * 2 * 255), 255, 0) | |
| 149 | - cnt2 += 1 | |
| 150 | - img2.paste(color, (left, top, min(left + 8, width), | |
| 151 | - min(top + 8, height))) | |
| 152 | - self.core.media_manager.put_media(tgt2, img2) | |
| 153 | - | |
| 154 | - def __str__(self): | |
| 155 | - return 'Chi-Square-Test' | |
| 156 | - | |
| 157 | - | |
| 158 | -def figure_to_pil(figure): | |
| 159 | - figure.canvas.draw() | |
| 160 | - return Image.fromstring('RGB', | |
| 161 | - figure.canvas.get_width_height(), | |
| 162 | - figure.canvas.tostring_rgb()) |
msteg/steganalysis/MPB.py.bak
| ... | ... | @@ -1,300 +0,0 @@ |
| 1 | -__author__ = 'chunk' | |
| 2 | -""" | |
| 3 | -Yun Q. Shi, et al - A Markov Process Based Approach to Effective Attacking JPEG Steganography | |
| 4 | -""" | |
| 5 | - | |
| 6 | -import time | |
| 7 | -import math | |
| 8 | -import numpy as np | |
| 9 | - | |
| 10 | -from .. import * | |
| 11 | -from ...mjpeg import Jpeg,colorMap | |
| 12 | -from ...common import * | |
| 13 | - | |
| 14 | -import csv | |
| 15 | -import json | |
| 16 | -import pickle | |
| 17 | -import cv2 | |
| 18 | -from sklearn import svm | |
| 19 | - | |
| 20 | -base_dir = '/home/hadoop/data/HeadShoulder/' | |
| 21 | - | |
| 22 | - | |
| 23 | -class MPB(StegBase): | |
| 24 | - """ | |
| 25 | - Markov Process Based Steganalyasis Algo. | |
| 26 | - """ | |
| 27 | - | |
| 28 | - def __init__(self): | |
| 29 | - StegBase.__init__(self, sample_key) | |
| 30 | - self.model = None | |
| 31 | - self.svm = None | |
| 32 | - | |
| 33 | - def _get_trans_prob_mat_orig(self, ciq, T=4): | |
| 34 | - """ | |
| 35 | - Original! | |
| 36 | - Calculate Transition Probability Matrix. | |
| 37 | - | |
| 38 | - :param ciq: jpeg DCT coeff matrix, 2-D numpy array of int16 (pre-abs) | |
| 39 | - :param T: signed integer, usually 1~7 | |
| 40 | - :return: TPM - 3-D tensor, numpy array of size (2*T+1, 2*T+1, 4) | |
| 41 | - """ | |
| 42 | - ciq = np.absolute(ciq).clip(0, T) | |
| 43 | - TPM = np.zeros((2 * T + 1, 2 * T + 1, 4), np.float64) | |
| 44 | - # Fh = np.diff(ciq, axis=-1) | |
| 45 | - # Fv = np.diff(ciq, axis=0) | |
| 46 | - Fh = ciq[:-1, :-1] - ciq[:-1, 1:] | |
| 47 | - Fv = ciq[:-1, :-1] - ciq[1:, :-1] | |
| 48 | - Fd = ciq[:-1, :-1] - ciq[1:, 1:] | |
| 49 | - Fm = ciq[:-1, 1:] - ciq[1:, :-1] | |
| 50 | - | |
| 51 | - Fh1 = Fh[:-1, :-1] | |
| 52 | - Fh2 = Fh[:-1, 1:] | |
| 53 | - | |
| 54 | - Fv1 = Fv[:-1, :-1] | |
| 55 | - Fv2 = Fv[1:, :-1] | |
| 56 | - | |
| 57 | - Fd1 = Fd[:-1, :-1] | |
| 58 | - Fd2 = Fd[1:, 1:] | |
| 59 | - | |
| 60 | - Fm1 = Fm[:-1, 1:] | |
| 61 | - Fm2 = Fm[1:, :-1] | |
| 62 | - | |
| 63 | - # original:(very slow!) | |
| 64 | - for n in range(-T, T + 1): | |
| 65 | - for m in range(-T, T + 1): | |
| 66 | - dh = np.sum(Fh1 == m) * 1.0 | |
| 67 | - dv = np.sum(Fv1 == m) * 1.0 | |
| 68 | - dd = np.sum(Fd1 == m) * 1.0 | |
| 69 | - dm = np.sum(Fm1 == m) * 1.0 | |
| 70 | - | |
| 71 | - if dh != 0: | |
| 72 | - TPM[m, n, 0] = np.sum(np.logical_and(Fh1 == m, Fh2 == n)) / dh | |
| 73 | - | |
| 74 | - if dv != 0: | |
| 75 | - TPM[m, n, 1] = np.sum(np.logical_and(Fv1 == m, Fv2 == n)) / dv | |
| 76 | - | |
| 77 | - if dd != 0: | |
| 78 | - TPM[m, n, 2] = np.sum(np.logical_and(Fd1 == m, Fd2 == n)) / dd | |
| 79 | - | |
| 80 | - if dm != 0: | |
| 81 | - TPM[m, n, 3] = np.sum(np.logical_and(Fm1 == m, Fm2 == n)) / dm | |
| 82 | - | |
| 83 | - # 1.422729s | |
| 84 | - return TPM | |
| 85 | - | |
| 86 | - | |
| 87 | - def get_trans_prob_mat(self, ciq, T=4): | |
| 88 | - """ | |
| 89 | - Calculate Transition Probability Matrix. | |
| 90 | - | |
| 91 | - :param ciq: jpeg DCT coeff matrix, 2-D numpy array of int16 (pre-abs) | |
| 92 | - :param T: signed integer, usually 1~7 | |
| 93 | - :return: TPM - 3-D tensor, numpy array of size (2*T+1, 2*T+1, 4) | |
| 94 | - """ | |
| 95 | - | |
| 96 | - return self._get_trans_prob_mat_orig(ciq, T) | |
| 97 | - | |
| 98 | - | |
| 99 | - # timer = Timer() | |
| 100 | - ciq = np.absolute(ciq).clip(0, T) | |
| 101 | - TPM = np.zeros((2 * T + 1, 2 * T + 1, 4), np.float64) | |
| 102 | - # Fh = np.diff(ciq, axis=-1) | |
| 103 | - # Fv = np.diff(ciq, axis=0) | |
| 104 | - Fh = ciq[:-1, :-1] - ciq[:-1, 1:] | |
| 105 | - Fv = ciq[:-1, :-1] - ciq[1:, :-1] | |
| 106 | - Fd = ciq[:-1, :-1] - ciq[1:, 1:] | |
| 107 | - Fm = ciq[:-1, 1:] - ciq[1:, :-1] | |
| 108 | - | |
| 109 | - Fh1 = Fh[:-1, :-1].ravel() | |
| 110 | - Fh2 = Fh[:-1, 1:].ravel() | |
| 111 | - | |
| 112 | - Fv1 = Fv[:-1, :-1].ravel() | |
| 113 | - Fv2 = Fv[1:, :-1].ravel() | |
| 114 | - | |
| 115 | - Fd1 = Fd[:-1, :-1].ravel() | |
| 116 | - Fd2 = Fd[1:, 1:].ravel() | |
| 117 | - | |
| 118 | - Fm1 = Fm[:-1, 1:].ravel() | |
| 119 | - Fm2 = Fm[1:, :-1].ravel() | |
| 120 | - | |
| 121 | - | |
| 122 | - | |
| 123 | - # 0.089754s | |
| 124 | - # timer.mark() | |
| 125 | - # TPM[Fh1.ravel(), Fh2.ravel(), 0] += 1 | |
| 126 | - # TPM[Fv1.ravel(), Fv2.ravel(), 1] += 1 | |
| 127 | - # TPM[Fd1.ravel(), Fd2.ravel(), 2] += 1 | |
| 128 | - # TPM[Fm1.ravel(), Fm2.ravel(), 3] += 1 | |
| 129 | - # timer.report() | |
| 130 | - | |
| 131 | - # 1.459668s | |
| 132 | - # timer.mark() | |
| 133 | - # for i in range(len(Fh1)): | |
| 134 | - # TPM[Fh1[i], Fh2[i], 0] += 1 | |
| 135 | - # for i in range(len(Fv1)): | |
| 136 | - # TPM[Fv1[i], Fv2[i], 1] += 1 | |
| 137 | - # for i in range(len(Fd1)): | |
| 138 | - # TPM[Fd1[i], Fd2[i], 2] += 1 | |
| 139 | - # for i in range(len(Fm1)): | |
| 140 | - # TPM[Fm1[i], Fm2[i], 3] += 1 | |
| 141 | - # timer.report() | |
| 142 | - | |
| 143 | - # 1.463982s | |
| 144 | - # timer.mark() | |
| 145 | - for m, n in zip(Fh1.ravel(), Fh2.ravel()): | |
| 146 | - TPM[m, n, 0] += 1 | |
| 147 | - | |
| 148 | - for m, n in zip(Fv1.ravel(), Fv2.ravel()): | |
| 149 | - TPM[m, n, 1] += 1 | |
| 150 | - | |
| 151 | - for m, n in zip(Fd1.ravel(), Fd2.ravel()): | |
| 152 | - TPM[m, n, 2] += 1 | |
| 153 | - | |
| 154 | - for m, n in zip(Fm1.ravel(), Fm2.ravel()): | |
| 155 | - TPM[m, n, 3] += 1 | |
| 156 | - # timer.report() | |
| 157 | - | |
| 158 | - # 0.057505s | |
| 159 | - # timer.mark() | |
| 160 | - for m in range(-T, T + 1): | |
| 161 | - dh = np.sum(Fh1 == m) * 1.0 | |
| 162 | - dv = np.sum(Fv1 == m) * 1.0 | |
| 163 | - dd = np.sum(Fd1 == m) * 1.0 | |
| 164 | - dm = np.sum(Fm1 == m) * 1.0 | |
| 165 | - | |
| 166 | - if dh != 0: | |
| 167 | - TPM[m, :, 0] /= dh | |
| 168 | - | |
| 169 | - if dv != 0: | |
| 170 | - TPM[m, :, 1] /= dv | |
| 171 | - | |
| 172 | - if dd != 0: | |
| 173 | - TPM[m, :, 2] /= dd | |
| 174 | - | |
| 175 | - if dm != 0: | |
| 176 | - TPM[m, :, 3] /= dm | |
| 177 | - # timer.report() | |
| 178 | - | |
| 179 | - return TPM | |
| 180 | - | |
| 181 | - def load_dataset(self, mode, file): | |
| 182 | - if mode == 'local': | |
| 183 | - return self._load_dataset_from_local(file) | |
| 184 | - elif mode == 'remote' or mode == 'hbase': | |
| 185 | - return self._load_dataset_from_hbase(file) | |
| 186 | - else: | |
| 187 | - raise Exception("Unknown mode!") | |
| 188 | - | |
| 189 | - def _load_dataset_from_local(self, list_file='images_map_Train.tsv'): | |
| 190 | - """ | |
| 191 | - load jpeg dataset according to a file of file-list. | |
| 192 | - | |
| 193 | - :param list_file: a tsv file with each line for a jpeg file path | |
| 194 | - :return:(X,Y) for SVM | |
| 195 | - """ | |
| 196 | - list_file = base_dir + list_file | |
| 197 | - | |
| 198 | - X = [] | |
| 199 | - Y = [] | |
| 200 | - dict_tagbuf = {} | |
| 201 | - dict_dataset = {} | |
| 202 | - | |
| 203 | - with open(list_file, 'rb') as tsvfile: | |
| 204 | - tsvfile = csv.reader(tsvfile, delimiter='\t') | |
| 205 | - for line in tsvfile: | |
| 206 | - imgname = line[0] + '.jpg' | |
| 207 | - dict_tagbuf[imgname] = line[1] | |
| 208 | - | |
| 209 | - dir = base_dir + 'Feat/' | |
| 210 | - for path, subdirs, files in os.walk(dir + 'Train/'): | |
| 211 | - for name in files: | |
| 212 | - featpath = os.path.join(path, name) | |
| 213 | - # print featpath | |
| 214 | - with open(featpath, 'rb') as featfile: | |
| 215 | - imgname = path.split('/')[-1] + name.replace('.mpb', '.jpg') | |
| 216 | - dict_dataset[imgname] = json.loads(featfile.read()) | |
| 217 | - | |
| 218 | - for imgname, tag in dict_tagbuf.items(): | |
| 219 | - tag = 1 if tag == 'True' else 0 | |
| 220 | - X.append(dict_dataset[imgname]) | |
| 221 | - Y.append(tag) | |
| 222 | - | |
| 223 | - return X, Y | |
| 224 | - | |
| 225 | - | |
| 226 | - def _load_dataset_from_hbase(self, table='ImgCV'): | |
| 227 | - pass | |
| 228 | - | |
| 229 | - | |
| 230 | - def _model_svm_train_sk(self, X, Y): | |
| 231 | - timer = Timer() | |
| 232 | - timer.mark() | |
| 233 | - lin_clf = svm.LinearSVC() | |
| 234 | - lin_clf.fit(X, Y) | |
| 235 | - with open('res/tmp.model', 'wb') as modelfile: | |
| 236 | - model = pickle.dump(lin_clf, modelfile) | |
| 237 | - | |
| 238 | - timer.report() | |
| 239 | - | |
| 240 | - self.svm = 'sk' | |
| 241 | - self.model = lin_clf | |
| 242 | - | |
| 243 | - return lin_clf | |
| 244 | - | |
| 245 | - def _model_svm_predict_sk(self, image, clf=None): | |
| 246 | - if clf is None: | |
| 247 | - if self.svm == 'sk' and self.model != None: | |
| 248 | - clf = self.model | |
| 249 | - else: | |
| 250 | - with open('res/tmp.model', 'rb') as modelfile: | |
| 251 | - clf = pickle.load(modelfile) | |
| 252 | - | |
| 253 | - im = mjpeg.Jpeg(image, key=sample_key) | |
| 254 | - ciq = im.coef_arrays[mjpeg.colorMap['Y']] | |
| 255 | - tpm = self.get_trans_prob_mat(ciq) | |
| 256 | - | |
| 257 | - return clf.predict(tpm) | |
| 258 | - | |
| 259 | - | |
| 260 | - def _model_svm_train_cv(self, X, Y): | |
| 261 | - svm_params = dict(kernel_type=cv2.SVM_LINEAR, | |
| 262 | - svm_type=cv2.SVM_C_SVC, | |
| 263 | - C=2.67, gamma=5.383) | |
| 264 | - | |
| 265 | - timer = Timer() | |
| 266 | - timer.mark() | |
| 267 | - svm = cv2.SVM() | |
| 268 | - svm.train(X, Y, params=svm_params) | |
| 269 | - svm.save('res/svm_data.model') | |
| 270 | - | |
| 271 | - self.svm = 'cv' | |
| 272 | - self.model = svm | |
| 273 | - | |
| 274 | - return svm | |
| 275 | - | |
| 276 | - def _model_svm_predict_cv(self, image, svm=None): | |
| 277 | - if svm is None: | |
| 278 | - if self.svm == 'cv' and self.model != None: | |
| 279 | - clf = self.model | |
| 280 | - else: | |
| 281 | - svm = cv2.SVM() | |
| 282 | - svm.load('res/svm_data.model') | |
| 283 | - | |
| 284 | - im = mjpeg.Jpeg(image, key=sample_key) | |
| 285 | - ciq = im.coef_arrays[mjpeg.colorMap['Y']] | |
| 286 | - tpm = self.get_trans_prob_mat(ciq) | |
| 287 | - | |
| 288 | - return svm.predict(tpm) | |
| 289 | - | |
| 290 | - def train_svm(self): | |
| 291 | - X, Y = self.load_dataset('local', 'images_map_Train.tsv') | |
| 292 | - return self._model_svm_train_sk(X, Y) | |
| 293 | - | |
| 294 | - def predict_svm(self, image): | |
| 295 | - return self._model_svm_predict_sk(image) | |
| 296 | - | |
| 297 | - | |
| 298 | - | |
| 299 | - | |
| 300 | - |