SVM.py
5.44 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
'''
SVM Model.
@author: chunk
chunkplus@gmail.com
2014 Dec
'''
from ...mfeat import *
from ...mmodel import *
from ...mmodel.svm.svmutil import *
from ...mspark import SC
from ...common import *
import numpy as np
import pickle
from sklearn import svm
dict_Train = {}
dict_databuf = {}
dict_tagbuf = {}
dict_featbuf = {}
class ModelSVM(ModelBase):
def __init__(self, toolset='sklearn', sc=None):
ModelBase.__init__(self)
self.toolset = toolset
self.sparker = sc
def _train_libsvm(self, X, Y):
X, Y = list(X), list(Y)
# X, Y = [float(i) for i in X], [float(i) for i in Y]
prob = svm_problem(Y, X)
param = svm_parameter('-t 0 -c 4 -b 1 -h 0')
# param = svm_parameter(kernel_type=LINEAR, C=10)
m = svm_train(prob, param)
svm_save_model('res/svm_libsvm.model', m)
self.model = m
return m
def _predict_libsvm(self, feat, model=None):
if model is None:
if self.model != None:
model = self.model
else:
print 'loading model ...'
model = svm_load_model('res/svm_libsvm.model')
feat = [list(feat)]
# print len(feat),[0] * len(feat)
label, _, _ = svm_predict([0] * len(feat), feat, model)
return label
def _test_libsvm(self, X, Y, model=None):
if model is None:
if self.model != None:
model = self.model
else:
print 'loading model ...'
model = svm_load_model('res/svm_libsvm.model')
X, Y = list(X), list(Y)
p_labs, p_acc, p_vals = svm_predict(Y, X, model)
# ACC, MSE, SCC = evaluations(Y, p_labs)
return p_acc
def _train_sklearn(self, X, Y):
clf = svm.SVC(C=4, kernel='linear', shrinking=False, verbose=True)
clf.fit(X, Y)
with open('res/svm_sk.model', 'wb') as modelfile:
model = pickle.dump(clf, modelfile)
self.model = clf
return clf
def _predict_sklearn(self, feat, model=None):
"""N.B. sklearn.svm.base.predict :
Perform classification on samples in X.
Parameters
----------
X : {array-like, sparse matrix}, shape = [n_samples, n_features]
Returns
-------
y_pred : array, shape = [n_samples]
Class labels for samples in X.
"""
if model is None:
if self.model != None:
model = self.model
else:
print 'loading model ...'
with open('res/svm_sklearn.model', 'rb') as modelfile:
model = pickle.load(modelfile)
return model.predict(feat)
def __test_sklearn(self, X, Y, model=None):
if model is None:
if self.model != None:
model = self.model
else:
print 'loading model ...'
with open('res/svm_sklearn.model', 'rb') as modelfile:
model = pickle.load(modelfile)
result_Y = np.array(self._predict_sklearn(X, model))
fp = 0
tp = 0
sum = np.sum(np.array(Y) == 1)
positive, negative = np.sum(np.array(Y) == 1), np.sum(np.array(Y) == 0)
print positive, negative
for i in range(len(Y)):
if Y[i] == 0 and result_Y[i] == 1:
fp += 1
elif Y[i] == 1 and result_Y[i] == 1:
tp += 1
return float(fp) / negative, float(tp) / positive, np.mean(Y == result_Y)
def _test_sklearn(self, X, Y, model=None):
if model is None:
if self.model != None:
model = self.model
else:
print 'loading model ...'
with open('res/svm_sklearn.model', 'rb') as modelfile:
model = pickle.load(modelfile)
return model.score(X, Y)
def _train_spark(self, X, Y=None):
if self.sparker == None:
self.sparker = SC.Sparker(host='HPC-server', appname='ImageCV',
master='spark://HPC-server:7077')
self.model = self.sparker.train_svm(X, Y)
return svm
def _predict_spark(self, feat, model=None):
return self.sparker.predict_svm(feat, model)
def _test_spark(self, X, Y, model=None):
return self.sparker.test_svm(X, Y, model)
def train(self, X, Y=None):
if self.toolset == 'sklearn':
return self._train_sklearn(X, Y)
elif self.toolset == 'libsvm':
return self._train_libsvm(X, Y)
elif self.toolset == 'spark':
return self._train_spark(X, Y)
else:
raise Exception("Unknown toolset!")
def predict(self, feat, model=None):
if self.toolset == 'sklearn':
return self._predict_sklearn(feat, model)
elif self.toolset == 'libsvm':
return self._predict_libsvm(feat, model)
elif self.toolset == 'spark':
return self._predict_spark(feat, model)
else:
raise Exception("Unknown toolset!")
def test(self, X, Y=None, model=None):
if self.toolset == 'sklearn':
return self.__test_sklearn(X, Y, model)
elif self.toolset == 'libsvm':
return self._test_libsvm(X, Y, model)
elif self.toolset == 'spark':
return self._test_spark(X, Y, model)
else:
raise Exception("Unknown toolset!")