SVM.py
7.51 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
'''
SVM Model.
@author: chunk
chunkplus@gmail.com
2014 Dec
'''
import os, sys
from ...mfeat import *
from ...mmodel import *
from ...mmodel.svm.svmutil import *
from ...mspark import SC2
from ...common import *
import numpy as np
import csv
import json
import pickle
import cv2
from sklearn import svm
package_dir = os.path.dirname(os.path.abspath(__file__))
dict_Train = {}
dict_databuf = {}
dict_tagbuf = {}
dict_featbuf = {}
class ModelSVM(ModelBase):
def __init__(self, toolset='sklearn', sc=None):
ModelBase.__init__(self)
self.toolset = toolset
self.sparker = sc
def _train_libsvm(self, X, Y):
X, Y = list(X), list(Y)
# X, Y = [float(i) for i in X], [float(i) for i in Y]
prob = svm_problem(Y, X)
param = svm_parameter('-t 0 -c 4 -b 1 -h 0')
# param = svm_parameter(kernel_type=LINEAR, C=10)
m = svm_train(prob, param)
svm_save_model(os.path.join(package_dir, '../..', 'res/svm_libsvm.model'), m)
self.model = m
return m
def _predict_libsvm(self, feat, model=None):
if model is None:
if self.model != None:
model = self.model
else:
print 'loading model ...'
model = svm_load_model(os.path.join(package_dir, '../..', 'res/svm_libsvm.model'))
feat = [list(feat)]
# print len(feat),[0] * len(feat)
label, _, _ = svm_predict([0] * len(feat), feat, model)
return label
def _test_libsvm(self, X, Y, model=None):
if model is None:
if self.model != None:
model = self.model
else:
print 'loading model ...'
model = svm_load_model(os.path.join(package_dir, '../..', 'res/svm_libsvm.model'))
X, Y = list(X), list(Y)
p_labs, p_acc, p_vals = svm_predict(Y, X, model)
# ACC, MSE, SCC = evaluations(Y, p_labs)
return p_acc
def _train_sklearn(self, X, Y):
clf = svm.SVC(C=4, kernel='linear', shrinking=False, verbose=True)
clf.fit(X, Y)
with open(os.path.join(package_dir, '../..', 'res/svm_sklearn.model'), 'wb') as modelfile:
model = pickle.dump(clf, modelfile)
self.model = clf
return clf
def _predict_sklearn(self, feat, model=None):
"""N.B. sklearn.svm.base.predict :
Perform classification on samples in X.
Parameters
----------
X : {array-like, sparse matrix}, shape = [n_samples, n_features]
Returns
-------
y_pred : array, shape = [n_samples]
Class labels for samples in X.
"""
if model is None:
if self.model != None:
model = self.model
else:
print 'loading model ...'
with open(os.path.join(package_dir, '../..', 'res/svm_sklearn.model'), 'rb') as modelfile:
model = pickle.load(modelfile)
return model.predict(feat)
def __test_sklearn(self, X, Y, model=None):
if model is None:
if self.model != None:
model = self.model
else:
print 'loading model ...'
with open(os.path.join(package_dir, '../..', 'res/svm_sklearn.model'), 'rb') as modelfile:
model = pickle.load(modelfile)
result_Y = np.array(self._predict_sklearn(X, model))
fp = 0
tp = 0
sum = np.sum(np.array(Y) == 1)
positive, negative = np.sum(np.array(Y) == 1), np.sum(np.array(Y) == 0)
print positive, negative
for i in range(len(Y)):
if Y[i] == 0 and result_Y[i] == 1:
fp += 1
elif Y[i] == 1 and result_Y[i] == 1:
tp += 1
return float(fp) / negative, float(tp) / positive, np.mean(Y == result_Y)
def _test_sklearn(self, X, Y, model=None):
if model is None:
if self.model != None:
model = self.model
else:
print 'loading model ...'
with open(os.path.join(package_dir, '../..', 'res/svm_sklearn.model'), 'rb') as modelfile:
model = pickle.load(modelfile)
return model.score(X, Y)
def _train_opencv(self, X, Y):
svm_params = dict(kernel_type=cv2.SVM_LINEAR,
svm_type=cv2.SVM_C_SVC,
C=2.67, gamma=5.383)
X, Y = np.array(X, dtype=np.float32), np.array(Y, dtype=np.float32)
svm = cv2.SVM()
svm.train(X, Y, params=svm_params)
svm.save(os.path.join(package_dir, '../..', 'res/svm_opencv.model'))
self.model = svm
return svm
def _predict_opencv(self, feat, model=None):
if model is None:
if self.model != None:
model = self.model
else:
print 'loading model ...'
with open(os.path.join(package_dir, '../..', 'res/svm_opencv.model'), 'rb') as modelfile:
model = pickle.load(modelfile)
feat = np.array(feat, dtype=np.float32)
return model.predict(feat)
def _test_opencv(self, X, Y, model=None):
if model is None:
if self.model != None:
model = self.model
else:
print 'loading model ...'
with open(os.path.join(package_dir, '../..', 'res/svm_opencv.model'), 'rb') as modelfile:
model = pickle.load(modelfile)
X, Y = np.array(X, dtype=np.float32), np.array(Y, dtype=np.float32)
# result_Y = np.array([self._predict_cv(x, model) for x in X])
result_Y = np.array(model.predict_all(X)).ravel()
return np.mean(Y == result_Y)
def _train_spark(self, X, Y=None):
if self.sparker == None:
self.sparker = SC2.Sparker(host='HPC-server', appname='ImageCV', master='spark://HPC-server:7077')
self.model = self.sparker.train_svm(X, Y)
return svm
def _predict_spark(self, feat, model=None):
return self.sparker.predict_svm(feat, model)
def _test_spark(self, X, Y, model=None):
return self.sparker.test_svm(X, Y, model)
def train(self, X, Y=None):
if self.toolset == 'sklearn':
return self._train_sklearn(X, Y)
elif self.toolset == 'opencv':
return self._train_opencv(X, Y)
elif self.toolset == 'libsvm':
return self._train_libsvm(X, Y)
elif self.toolset == 'spark':
return self._train_spark(X, Y)
else:
raise Exception("Unknown toolset!")
def predict(self, feat, model=None):
if self.toolset == 'sklearn':
return self._predict_sklearn(feat, model)
elif self.toolset == 'opencv':
return self._predict_opencv(feat, model)
elif self.toolset == 'libsvm':
return self._predict_libsvm(feat, model)
elif self.toolset == 'spark':
return self._predict_spark(feat, model)
else:
raise Exception("Unknown toolset!")
def test(self, X, Y=None, model=None):
if self.toolset == 'sklearn':
return self.__test_sklearn(X, Y, model)
elif self.toolset == 'opencv':
return self._test_opencv(X, Y, model)
elif self.toolset == 'libsvm':
return self._test_libsvm(X, Y, model)
elif self.toolset == 'spark':
return self._test_spark(X, Y, model)
else:
raise Exception("Unknown toolset!")