THEANO.py 10.8 KB
__author__ = 'chunk'

from ...mfeat import *
from ...mmodel import *
from ...mspark import SC
from ...common import *
from .theanoutil import *

import numpy as np
from sklearn import cross_validation

from theano import function, config, shared, sandbox
import theano.tensor as T

import gzip
import cPickle

package_dir = os.path.dirname(os.path.abspath(__file__))


class ModelTHEANO(ModelBase):
    """
    Some notes:

    1.<http://deeplearning.net/software/theano/faq.html>
    Error allocating 1411344000 bytes of device memory (out of memory). Driver report 203563008 bytes free and 3220897792 bytes total

    This scenario arises when an operation requires allocation of a large contiguous block of memory but no blocks of sufficient size are available.
    GPUs do not have virtual memory and as such all allocations must be assigned to a continuous memory region. CPUs do not have this limitation because or their support for virtual memory. Multiple allocations on a GPU can result in memory fragmentation which can makes it more difficult to find contiguous regions of memory of sufficient size during subsequent memory allocations.


    """
    def __init__(self, toolset='cnn', sc=None):
        ModelBase.__init__(self)
        self.toolset = toolset
        self.sparker = sc
        self.model = None

    def _shared_dataset(self, data_xy, borrow=True):
        """ Function that loads the dataset into shared variables

        The reason we store our dataset in shared variables is to allow
        Theano to copy it into the GPU memory (when code is run on GPU).
        Since copying data into the GPU is slow, copying a minibatch everytime
        is needed (the default behaviour if the data is not in a shared
        variable) would lead to a large decrease in performance.
        """
        data_x, data_y = data_xy
        shared_x = theano.shared(np.asarray(data_x,
                                            dtype=theano.config.floatX),
                                 borrow=borrow)
        shared_y = theano.shared(np.asarray(data_y,
                                            dtype=theano.config.floatX),
                                 borrow=borrow)
        # When storing data on the GPU it has to be stored as floats
        # therefore we will store the labels as ``floatX`` as well
        # (``shared_y`` does exactly that). But during our computations
        # we need them as ints (we use labels as index, and if they are
        # floats it doesn't make sense) therefore instead of returning
        # ``shared_y`` we will have to cast it to int. This little hack
        # lets ous get around this issue
        return shared_x, T.cast(shared_y, 'int32')

    def _train_cnn(self, X=None, Y=None, dataset=os.path.join(package_dir, '../../res/', 'ils_crop.pkl'),
                   learning_rate=0.1, n_epochs=200,
                   nkerns=[20, 50, 50],
                   batch_size=400):

        if X == None:
            assert dataset != None
            with open(dataset, 'rb') as f:
                train_set, test_set = cPickle.load(f)

            X_train, Y_train = train_set
            X_test, Y_test = test_set
        else:
            X_train, X_test, Y_train, Y_test = cross_validation.train_test_split(X, Y, test_size=0.2, random_state=0)

        X_train, Y_train = self._shared_dataset((X_train, Y_train))
        X_test, Y_test = self._shared_dataset((X_test, Y_test))

        # X_train = theano.shared(np.asarray(X_train, dtype=theano.config.floatX), borrow=True)
        # Y_train = theano.shared(np.asarray(Y_train, dtype=theano.config.floatX), borrow=True)
        # X_test = theano.shared(np.asarray(X_test, dtype=theano.config.floatX), borrow=True)
        # Y_test = theano.shared(np.asarray(Y_test, dtype=theano.config.floatX), borrow=True)

        n_train_batches = X_train.get_value(borrow=True).shape[0] / batch_size
        n_test_batches = X_test.get_value(borrow=True).shape[0] / batch_size

        print X_train.get_value(borrow=True).shape, Y_train.shape

        rng = np.random.RandomState(12306)
        index = T.lscalar()
        x = T.matrix('x')
        y = T.ivector('y')

        ######################
        # BUILD ACTUAL MODEL #
        ######################
        print '... building the model'

        layer0_input = x.reshape((batch_size, 1, 304, 304))

        # Construct the first convolutional pooling layer:
        # filtering reduces the image size to (304-8+1 , 304-8+1) = (297, 297)
        # maxpooling reduces this further to (297/4, 297/4) = (74, 74)
        # 4D output tensor is thus of shape (batch_size, nkerns[0], 74, 74)
        layer0 = ConvPoolLayer(
            rng,
            input=layer0_input,
            image_shape=(batch_size, 1, 304, 304),
            filter_shape=(nkerns[0], 1, 8, 8),
            poolsize=(4, 4)
        )

        # Construct the second convolutional pooling layer
        # filtering reduces the image size to (74-8+1, 74-8+1) = (67, 67)
        # maxpooling reduces this further to (67/4, 67/4) = (16, 16)
        # 4D output tensor is thus of shape (batch_size, nkerns[1], 16, 16)
        layer1 = ConvPoolLayer(
            rng,
            input=layer0.output,
            image_shape=(batch_size, nkerns[0], 74, 74),
            filter_shape=(nkerns[1], nkerns[0], 8, 8),
            poolsize=(4, 4)
        )

        # Construct the third convolutional pooling layer
        # filtering reduces the image size to (16-5+1, 16-5+1) = (12, 12)
        # maxpooling reduces this further to (12/3, 12/3) = (4, 4)
        # 4D output tensor is thus of shape (batch_size, nkerns[2], 4, 4)
        layer2 = ConvPoolLayer(
            rng,
            input=layer1.output,
            image_shape=(batch_size, nkerns[1], 16, 16),
            filter_shape=(nkerns[2], nkerns[1], 5, 5),
            poolsize=(3, 3)
        )

        # the HiddenLayer being fully-connected, it operates on 2D matrices of
        # shape (batch_size, num_pixels) (i.e matrix of rasterized images).
        # This will generate a matrix of shape (batch_size, nkerns[2] * 4 * 4),
        # or (500, 50 * 4 * 4) = (500, 800) with the default values.
        layer3_input = layer2.output.flatten(2)
        # construct a fully-connected sigmoidal layer
        layer3 = HiddenLayer(
            rng,
            input=layer3_input,
            n_in=nkerns[2] * 4 * 4,
            n_out=500,
            activation=T.tanh
        )
        # classify the values of the fully-connected sigmoidal layer
        layer4 = LogisticRegression(input=layer3.output, n_in=500, n_out=2)

        # the cost we minimize during training is the NLL of the model
        cost = layer4.negative_log_likelihood(y)
        params = layer4.params + layer3.params + layer2.params + layer1.params + layer0.params
        grads = T.grad(cost, params)
        updates = [
            (param_i, param_i - learning_rate * grad_i)
            for param_i, grad_i in zip(params, grads)
        ]

        train_model = theano.function(
            [index],
            cost,
            updates=updates,
            givens={
                x: X_train[index * batch_size: (index + 1) * batch_size],
                y: Y_train[index * batch_size: (index + 1) * batch_size]
            }
        )

        test_model = theano.function(
            [index],
            layer4.errors(y),
            givens={
                x: X_test[index * batch_size: (index + 1) * batch_size],
                y: Y_test[index * batch_size: (index + 1) * batch_size]
            }
        )

        ###############
        # TRAIN MODEL #
        ###############
        print '... training'
        # early-stopping parameters
        patience = 10000  # look as this many examples regardless
        patience_increase = 2  # wait this much longer when a new best is found
        improvement_threshold = 0.995  # a relative improvement of this much is
        # considered significant
        validation_frequency = min(n_train_batches, patience / 2)
        # go through this many
        # minibatche before checking the network
        # on the validation set; in this case we
        # check every epoch

        best_validation_loss = np.inf
        best_iter = 0
        test_score = 0.
        start_time = time.clock()

        epoch = 0
        done_looping = False

        while (epoch < n_epochs) and (not done_looping):
            epoch = epoch + 1
            for minibatch_index in xrange(n_train_batches):

                iter = (epoch - 1) * n_train_batches + minibatch_index

                # if iter % 100 == 0:
                #     print 'training @ iter = ', iter
                print 'training @ iter = ', iter
                cost_ij = train_model(minibatch_index)

                if (iter + 1) % validation_frequency == 0:

                    # compute zero-one loss on validation set
                    validation_losses = [test_model(i) for i in xrange(n_test_batches)]
                    this_validation_loss = np.mean(validation_losses)
                    print('epoch %i, minibatch %i/%i, validation error %f %%' %
                          (epoch, minibatch_index + 1, n_train_batches,
                           this_validation_loss * 100.))

                    # if we got the best validation score until now
                    if this_validation_loss < best_validation_loss:

                        # improve patience if loss improvement is good enough
                        if this_validation_loss < best_validation_loss * \
                                improvement_threshold:
                            patience = max(patience, iter * patience_increase)

                        # save best validation score and iteration number
                        best_validation_loss = this_validation_loss
                        best_iter = iter

                if patience <= iter:
                    done_looping = True
                    break

        end_time = time.clock()
        print('Optimization complete.')
        print('Best validation score of %f %% obtained at iteration %i, '
              'with test performance %f %%' %
              (best_validation_loss * 100., best_iter + 1, test_score * 100.))
        print >> sys.stderr, ('The code for file ' +
                              os.path.split(__file__)[1] +
                              ' ran for %.2fm' % ((end_time - start_time) / 60.))


    def train(self, X, Y):
        if self.toolset == 'cnn':
            return self._train_cnn(X, Y)
        else:
            raise Exception("Unknown toolset!")


    def predict(self, feat, model=None):
        if self.toolset == 'cnn':
            return self._predict_cnn(feat, model)
        else:
            raise Exception("Unknown toolset!")


    def test(self, X, Y, model=None):
        if self.toolset == 'cnn':
            return self._test_cnn(X, Y, model)
        else:
            raise Exception("Unknown toolset!")