__init__.py 15 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476
## -*- coding: utf-8 -*-

from libmjsteg import Jsteg

__all__ = ['Jpeg', 'colorMap', 'diffblock', 'diffblocks']

# We need standard components from :mod:`numpy`, and some auxiliary
# functions from submodules.
#
# ::

import numpy.random as rnd
from numpy import shape
import numpy as np
import pylab as plt

import base
from dct import bdct, ibdct
from compress import *

# The colour codes are defined in the JPEG standard.  We store
# them here for easy reference by name::

colorCode = {
    "GRAYSCALE": 1,
    "RGB": 2,
    "YCbCr": 3,
    "CMYK": 4,
    "YCCK": 5
}

colorParam = ['Y', 'Cb', 'Cr']
colorMap = {'Y': 0, 'Cb': 1, 'Cr': 2}

# The JPEG class
# ==============

class Jpeg(Jsteg):
    """
      The jpeg (derived from jpegObject) allows the user to extract
      a sequence of pseudo-randomly ordered jpeg coefficients for
      watermarking/steganography, and reinsert them.
    """

    def __init__(self, file=None, key=None, rndkey=True, image=None,
                 verbosity=1, **kw):
        """
          The constructor will return a new Object with data from the given file.

          The key is used to determine the order of the jpeg coefficients.
          If no key is given, a random key is extracted using
          random.SystemRandom().
        """
        if image != None:
            raise NotImplementedError, "Compression is not yet implemented"
        Jsteg.__init__(self, file, **kw)
        self.verbosity = verbosity
        if verbosity > 0:
            print "[Jpeg] %s (%ix%i)" % (self.filename, self.image_width, self.image_height)
        if key != None:
            self.key = key
        elif rndkey:
            self.key = [base.sysrnd.getrandbits(16) for x in range(16)]
        else:
            self.key = None


    def getkey(self):
        """Return the key used to shuffle the coefficients."""
        return self.key

    # 1D Signal Representations
    # -------------------------

    def rawsignal(self, mask=base.acMaskBlock, channel="All"):
        """
          Return a 1D array of AC coefficients.
          (Most applications should use getsignal() rather than rawsignal().)
        """
        R = []
        if channel == "All":
            for X in self.coef_arrays:
                (h, w) = X.shape
                A = base.acMask(h, w, mask)
                R = np.hstack([R, X[A]])
        else:
            cID = self.getCompID(channel)
            X = self.coef_arrays[cID]
            (h, w) = X.shape
            A = base.acMask(h, w, mask)
            R = np.hstack([R, X[A]])
        return R

    def getsignal(self, mask=base.acMaskBlock, channel="All"):
        """Return a 1D array of AC coefficients in random order."""
        R = self.rawsignal(mask, channel)
        if self.key == None:
            return R
        else:
            rnd.seed(self.key)
            return R[rnd.permutation(len(R))]

    def setsignal(self, R0, mask=base.acMaskBlock, channel="All"):
        """Reinserts AC coefficients from getitem in the correct positions."""
        if self.key != None:
            rnd.seed(self.key)
            fst = 0
            P = rnd.permutation(len(R0))
            R = np.array(R0)
            R[P] = R0
        else:
            R = R0
        if channel == "All":
            for cID in range(3):
                X = self.coef_arrays[cID]
                s = X.size * 63 / 64
                (h, w) = X.shape
                X[base.acMask(h, w, mask)] = R[fst:(fst + s)]
                fst += s

                # Jset
                blocks = self.getCoefBlocks(channel=colorParam[cID])
                xmax, ymax = self.Jgetcompdim(cID)
                for y in range(ymax):
                    for x in range(xmax):
                        block = blocks[y, x]
                        self.Jsetblock(x, y, cID, bytearray(block.astype(np.int16)))

        else:
            cID = self.getCompID(channel)
            X = self.coef_arrays[cID]
            s = X.size * 63 / 64
            (h, w) = X.shape
            X[base.acMask(h, w, mask)] = R[fst:(fst + s)]
            fst += s

            # Jset
            blocks = self.getCoefBlocks(channel)
            xmax, ymax = self.Jgetcompdim(cID)
            for y in range(ymax):
                for x in range(xmax):
                    block = blocks[y, x]
                    self.Jsetblock(x, y, cID, bytearray(block.astype(np.int16)))

        assert len(R) == fst


    # Histogram and Image Statistics
    # ------------------------------

    def abshist(self, mask=base.acMaskBlock, T=8):
        """
          Make a histogram of absolute values for a signal.
        """
        A = abs(self.rawsignal(mask)).tolist()
        L = len(A)
        D = {}
        C = 0
        for i in range(T + 1):
            D[i] = A.count(i)
            C += D[i]
        D["high"] = L - C
        D["total"] = L
        return D

    def hist(self, mask=base.acMaskBlock, T=8):
        """
          Make a histogram of the jpeg coefficients.
          The mask is a boolean 8x8 matrix indicating the
          frequencies to be included.  This defaults to the
          AC coefficients.
        """
        A = self.rawsignal(mask).tolist()
        E = [-np.inf] + [i for i in range(-T, T + 2)] + [np.inf]
        return np.histogram(A, E)

    def plotHist(self, mask=base.acMaskBlock, T=8):
        """
          Make a histogram of the jpeg coefficients.
          The mask is a boolean 8x8 matrix indicating the
          frequencies to be included.  This defaults to the
          AC coefficients.
        """
        A = self.rawsignal(mask).tolist()
        E = [i for i in range(-T, T + 2)]
        plt.hist(A, E, histtype='bar')
        plt.show()

    def nzcount(self, *a, **kw):
        """Number of non-zero AC coefficients.

          Arguments are passed to rawsignal(), so a non-default mask could
          be specified to get other coefficients than the 63 AC coefficients.
        """
        R = list(self.rawsignal(*a, **kw))
        return len(R) - R.count(0)

    # Access to JPEG Image Data
    # -------------------------

    def getCompID(self, channel):
        """
          Get the index of the given colour channel.
        """
        # How do we adress different channels?
        colourSpace = self.jpeg_color_space;
        if colourSpace == colorCode["GRAYSCALE"]:
            if channel == "Y":
                return 0
            elif channel == None:
                return 0
            else:
                raise Exception, "Invalid colour space designator"
        elif colourSpace == colorCode["YCbCr"]:
            if channel == "Y":
                return 0
            elif channel == "Cb":
                return 1
            elif channel == "Cr":
                return 2
            else:
                raise Exception, "Invalid colour space designator"
        raise NotImplementedError, "Only YCbCr and Grayscale are supported."

    def getQMatrix(self, channel):
        """
          Return the quantisation matrix for the given colour channel.
        """
        cID = self.getCompID(channel)
        return self.quant_tables[self.comp_info[cID]["quant_tbl_no"]]

    def getCoefMatrix(self, channel="Y"):
        """
          This method returns the coefficient matrix for the given
          colour channel (as a matrix).
        """
        cID = self.getCompID(channel)
        return self.coef_arrays[cID]

    def setCoefMatrix(self, matrix, channel="Y"):
        v, h = self.getCoefMatrix(channel).shape
        assert matrix.shape == (v, h), "matrix is expected of size (%d,%d)" % (v, h)

        cID = self.getCompID(channel)
        self.coef_arrays[cID] = matrix

        blocks = self.getCoefBlocks(channel)
        xmax, ymax = self.Jgetcompdim(cID)
        for y in range(ymax):
            for x in range(xmax):
                block = blocks[y, x]
                self.Jsetblock(x, y, cID, bytearray(block.astype(np.int16)))

    def getCoefBlocks(self, channel="Y"):
        """
          This method returns the coefficient matrix for the given
          colour channel (as a 4-D tensor: (v,h,row,col)).
        """
        if channel == "All":
            return [
                np.array([np.hsplit(arr, arr.shape[1] / 8) for arr in np.vsplit(compMat, compMat.shape[0] / 8)]) for
                compMat in
                self.coef_arrays]

        compMat = self.getCoefMatrix(channel)
        return np.array([np.hsplit(arr, arr.shape[1] / 8) for arr in np.vsplit(compMat, compMat.shape[0] / 8)])

    def getCoefBlock(self, channel="Y", loc=(0, 0)):
        """
          This method returns the coefficient matrix for the given
          colour channel (as a 4-D tensor: (v,h,row,col)).
        """
        return self.getCoefBlocks(channel)[loc]


    def setCoefBlock(self, block, channel="Y", loc=(0, 0)):
        assert block.shape == (8, 8), "block is expected of size (8,8)"
        cID = self.getCompID(channel)
        v, h = loc[0] * 8, loc[1] * 8
        self.coef_arrays[cID][v:v + 8, h:h + 8] = block

        self.Jsetblock(loc[1], loc[0], cID, bytearray(block.astype(np.int16)))

    def setCoefBlocks(self, blocks, channel="Y"):
        assert blocks.shape[-2:] == (8, 8), "block is expected of size (8,8)"
        cID = self.getCompID(channel)

        vmax, hmax = blocks.shape[:2]
        for i in range(vmax):
            for j in range(hmax):
                v, h = i * 8, j * 8
                self.coef_arrays[cID][v:v + 8, h:h + 8] = blocks[i, j]
                self.Jsetblock(j, i, cID, bytearray(blocks[i, j].astype(np.int16)))

    def getSize(self):
        return self.image_width, self.image_height

    def getCapacity(self, channel="Y"):
        blocks = self.rawsignal(channel=channel)
        return np.sum(blocks != 0)

        # blocks = self.getCoefBlocks(channel)
        # capacity = 0
        # if channel == "All":
        #     for subblocks in blocks:
        #         capacity += (np.sum(subblocks != 0) - np.size(subblocks) / 64)
        # else:
        #     capacity = (np.sum(blocks != 0) - np.size(blocks) / 64)
        # return capacity

        # return (np.sum(blocks[0] != 0) - np.size(blocks[0]) / 64) + (np.sum(blocks[1] != 0) - np.size(
        # blocks[1]) / 64) / 4 + (np.sum(blocks[2] != 0) - np.size(blocks[2]) / 64) / 4
        # return np.sum(np.array(self.coef_arrays)!=0) - np.size(self.coef_arrays) / 64


    def getQuality(self):
        """
        Qaulity rating algorithm from ImageMagick.

            e.g.
            find ./ -name "*.jpg" | xargs -i sh -c "echo -n {} && identify -quiet -verbose {} |grep -E 'Quality' "

        Ref - http://stackoverflow.com/questions/2024947/is-it-possible-to-tell-the-quality-level-of-a-jpeg,http://www.imagemagick.org/discourse-server/viewtopic.php?f=1&t=20235
        """
        sum0 = np.sum(self.quant_tables[0])
        sum1 = np.sum(self.quant_tables[1])
        quality = None

        if sum0 != None:
            if sum1 != None:
                sum = sum0 + sum1
                qvalue = self.quant_tables[0].ravel()[2] + self.quant_tables[0].ravel()[53] + \
                         self.quant_tables[1].ravel()[0] + self.quant_tables[1].ravel()[-1]
                hashtable = bi_hash
                sumtable = bi_sum
            else:
                sum = sum0
                qvalue = self.quant_tables[0].ravel()[2] + self.quant_tables[0].ravel()[53]
                hashtable = single_hash
                sumtable = single_sum
        else:
            raise Exception("Quantization Tables Illegal")
            return None

        for i in range(100):
            if qvalue >= hashtable[i] or sum >= sumtable[i]:
                break
        quality = i + 1

        return quality


    # Decompression
    # -------------

    def getSpatial(self, channel="Y"):
        """
          This method returns one decompressed colour channel as a matrix.
          The appropriate JPEG coefficient matrix is dequantised
          (using the quantisation tables held by the object) and
          inverse DCT transformed.
        """
        X = self.getCoefMatrix(channel)
        Q = self.getQMatrix(channel)
        (M, N) = shape(X)
        assert M % 8 == 0, "Image size not divisible by 8"
        assert N % 8 == 0, "Image size not divisible by 8"
        D = X * base.repmat(Q, (M / 8, N / 8))
        S = ibdct(D)
        # assert max( abs(S).flatten() ) <=128, "Image colours out of range"
        return (S + 128 ).astype(np.uint8)

    # Complete, general decompression is not yet implemented::

    def getimage(self):
        """
          Decompress the image and a PIL Image object.
        """

        # Probably better to use a numpy image/array.

        raise NotImplementedError, "Decompression is not yet implemented"

        # We miss the routines for upsampling and adjusting the size

        L = len(self.coef_arrays)
        im = []
        for i in range(L):
            C = self.coef_arrays[i]
            if C != None:
                Q = self.quant_tables[self.comp_info[i]["quant_tbl_no"]]
                im.append(ibdct(dequantise(C, Q)))
        return Image.fromarray(im)


    # Calibration
    # -----------

    def getCalibrated(self, channel="Y", mode="all"):
        """
          Return a calibrated coefficient matrix for the given channel.
          Channel may be "Y", "Cb", or "Cr" for YCbCr format.
          For Grayscale images, it may be None or "Y".
        """
        S = self.getSpatial(channel)
        (M, N) = shape(S)
        assert M % 8 == 0, "Image size not divisible by 8"
        assert N % 8 == 0, "Image size not divisible by 8"
        if mode == "col":
            S1 = S[:, 4:(N - 4)]
            cShape = ( M / 8, N / 8 - 1 )
        else:
            S1 = S[4:(M - 4), 4:(N - 4)]
            cShape = ( (M - 1) / 8, (N - 1) / 8 )
        D = bdct(S1 - 128)
        X = D / base.repmat(self.getQMatrix(channel), cShape)
        return np.round(X)

    def calibrate(self, *a, **kw):
        assert len(self.coef_arrays) == 1
        self.coef_arrays[0] = self.getCalibrated(*a, **kw)

    def getCalSpatial(self, channel="Y"):
        """
          Return the decompressed, calibrated, grayscale image.
          A different colour channel can be selected with the channel
          argument.
        """

        # We calibrate the image, obtaining a JPEG matrix.

        C = self.getCalibrated(channel)

        # The rest is straight forward JPEG decompression.

        (M, N) = shape(C)
        cShape = (M / 8, N / 8)
        D = C * base.repmat(self.getQMatrix(channel), cShape)
        S = np.round(ibdct(D) + 128)
        return S.astype(np.uint8)


def diffblock(c1, c2):
    diff = False
    if np.array_equal(c1, c2):
        print("blocks match")
    else:
        print("blocks not match")
        diff = True

    return diff


def diffblocks(a, b):
    diff = False
    cnt = 0
    for comp in range(a.image_components):
        xmax, ymax = a.Jgetcompdim(comp)
        for y in range(ymax):
            for x in range(xmax):
                if a.Jgetblock(x, y, comp) != b.Jgetblock(x, y, comp):
                    print("blocks({},{}) in component {} not match".format(y, x, comp))
                    diff = True
                    cnt += 1
    return diff, cnt