__init__.py
8.93 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
## $Id: __init__.py 1601 2010-07-18 19:35:43Z css1hs $
## -*- coding: utf-8 -*-
"""
Processing in the JPEG domain.
------------------------------
:Module: pysteg.jpeg
:Date: $Date: 2010-07-18 20:35:43 +0100 (Sun, 18 Jul 2010) $
:Revision: $Revision: 1601 $
:Copyright: © 2010: University of Surrey, UK
:Author: Hans Georg Schaathun <H.Schaathun@surrey.ac.uk> (2010)
The main purpose of this package is to get direct access to the
JPEG data in a compressed file, without decompressing.
This functionality is provided by the :class:`jpeg` class,
which is the only member intended for export.
The core functionality is implemented in C, as the :class:`jpegObject` class,
following the pattern of Phil Sallee's toolbox for Matlab.
This class is not intended for direct use. The derived :class:`jpeg`
class gives additional functionality implemented in Python.
The :class:`jpegObject` class should never be used in itself.
The intention is to provide full support for compression and
decompression as well, but this has not yet been implemented and
tested.
This package is implemented partly in C, and the C code is not
properly documented. The main components are:
* jpeglib is the Independent JPEG Groups API for JPEG compression
* jpegObject defines a Python class used as a base class below.
"""
print "[pysteg.jpeg] $Id: __init__.py 2204 2011-04-05 11:43:38Z georg $"
from jpegObject import jpegObject
__all__ = [ "jpeg" ]
# We need standard components from :mod:`numpy`, and some auxiliary
# functions from submodules.
#
# ::
import numpy.random as rnd
from numpy import shape
import numpy as np
import base
from dct import bdct, ibdct
# The colour codes are defined in the JPEG standard. We store
# them here for easy reference by name::
colorCode = {
"GRAYSCALE" : 1,
"RGB" : 2,
"YCbCr" : 3,
"CMYK" : 4,
"YCCK" : 5
}
# The JPEG class
# ==============
#
# A derived class with methods to extract and reinsert a sample
class jpeg(jpegObject):
"""
The jpeg (derived from jpegObject) allows the user to extract
a sequence of pseudo-randomly ordered jpeg coefficients for
watermarking/steganography, and reinsert them.
"""
def __init__(self,file=None,key=None,rndkey=True,image=None,
verbosity=1,**kw):
"""
The constructor will return a new Object with data from the given file.
The key is used to determine the order of the jpeg coefficients.
If no key is given, a random key is extracted using
random.SystemRandom().
"""
if image != None:
raise NotImplementedError, "Compression is not yet implemented"
jpegObject.__init__(self,file,**kw)
self.verbosity = verbosity
if verbosity > 0:
print "[jpeg.__init__] Image size %ix%i" % (self.coef_arrays[0].shape)
if key != None:
self.key = key
elif rndkey:
self.key = [ base.sysrnd.getrandbits(16) for x in range(16) ]
else:
self.key = None
def getkey(self):
"""Return the key used to shuffle the coefficients."""
return self.key
# 1D Signal Representations
# -------------------------
def rawsignal(self,mask=base.acMaskBlock):
"""
Return a 1D array of AC coefficients.
(Most applications should use getsignal() rather than rawsignal().)
"""
R = []
for X in self.coef_arrays:
(h,w) = X.shape
A = base.acMask(h,w,mask)
R = np.hstack ( [ R, X[A] ] )
return R
def getsignal(self,mask=base.acMaskBlock):
"""Return a 1D array of AC coefficients in random order."""
R = self.rawsignal(mask)
if self.key == None:
return R
else:
rnd.seed(self.key)
return R[rnd.permutation(len(R))]
def setsignal(self,R0,mask=base.acMaskBlock):
"""Reinserts AC coefficients from getitem in the correct positions."""
if self.key != None:
rnd.seed(self.key)
fst = 0
P = rnd.permutation(len(R0))
R = np.array(R0)
R[P] = R0
else:
R = R0
for X in self.coef_arrays:
s = X.size * 63/64
(h,w) = X.shape
X[base.acMask(h,w,mask)] = R[fst:(fst+s)]
fst += s
assert len(R) == fst
return ;
# Histogram and Image Statistics
# ------------------------------
def abshist(self,mask=base.acMaskBlock,T=8):
"""
Make a histogram of absolute values for a signal.
"""
A = abs( self.rawsignal(mask) ).tolist()
L = len(A)
D = { }
C = 0
for i in range(T+1):
D[i] = A.count(i)
C += D[i]
D["high"] = L - C
D["total"] = L
return D
def hist(self,mask=base.acMaskBlock,T=8):
"""
Make a histogram of the jpeg coefficients.
The mask is a boolean 8x8 matrix indicating the
frequencies to be included. This defaults to the
AC coefficients.
"""
A = self.rawsignal(mask).tolist()
E = [ -np.inf ] + [ i for i in range(-T,T+2) ] + [ np.inf ]
return np.histogram( A, E )
def nzcount(self,*a,**kw):
"""Number of non-zero AC coefficients.
Arguments are passed to rawsignal(), so a non-default mask could
be specified to get other coefficients than the 63 AC coefficients.
"""
R = list(self.rawsignal(*a,**kw))
return len(R) - R.count(0)
# Access to JPEG Image Data
# -------------------------
def getCompID(self,channel):
"""
Get the index of the given colour channel.
"""
# How do we adress different channels?
colourSpace = self.jpeg_color_space ;
if colourSpace == colorCode["GRAYSCALE"]:
if channel == "Y": return 0
elif channel == None: return 0
else:
raise Exception, "Invalid colour space designator"
elif colourSpace == colorCode["YCbCr"]:
if channel == "Y": return 0
elif channel == "Cb": return 1
elif channel == "Cr": return 2
else:
raise Exception, "Invalid colour space designator"
raise NotImplementedError, "Only YCbCr and Grayscale are supported."
def getQMatrix(self,channel):
"""
Return the quantisation matrix for the given colour channel.
"""
cID = self.getCompID(channel)
return self.quant_tables[self.comp_info[cID]["quant_tbl_no"]]
def getCoefMatrix(self,channel="Y"):
"""
This method returns the coefficient matrix for the given
colour channel (as a matrix).
"""
cID = self.getCompID(channel)
return self.coef_arrays[cID]
# Decompression
# -------------
def getSpatial(self,channel="Y"):
"""
This method returns one decompressed colour channel as a matrix.
The appropriate JPEG coefficient matrix is dequantised
(using the quantisation tables held by the object) and
inverse DCT transformed.
"""
X = self.getCoefMatrix(channel)
Q = self.getQMatrix(channel)
(M,N) = shape(X)
assert M % 8 == 0, "Image size not divisible by 8"
assert N % 8 == 0, "Image size not divisible by 8"
D = X * base.repmat( Q, (M/8, N/8) )
S = ibdct(D)
#assert max( abs(S).flatten() ) <=128, "Image colours out of range"
return (S + 128 ).astype(np.uint8)
# Complete, general decompression is not yet implemented::
def getimage(self):
"""
Decompress the image and a PIL Image object.
"""
# Probably better to use a numpy image/array.
#
# ::
raise NotImplementedError, "Decompression is not yet implemented"
# We miss the routines for upsampling and adjusting the size
#
# ::
L = len(self.coef_arrays)
im = []
for i in range(L):
C = self.coef_arrays[i]
if C != None:
Q = self.quant_tables[self.comp_info[i]["quant_tbl_no"]]
im.append( ibdct( dequantise( C, Q ) ) )
return Image.fromarray(im)
# Calibration
# -----------
def getCalibrated(self,channel="Y",mode="all"):
"""
Return a calibrated coefficient matrix for the given channel.
Channel may be "Y", "Cb", or "Cr" for YCbCr format.
For Grayscale images, it may be None or "Y".
"""
S = self.getSpatial(channel)
(M,N) = shape(S)
assert M % 8 == 0, "Image size not divisible by 8"
assert N % 8 == 0, "Image size not divisible by 8"
if mode == "col":
S1 = S[:,4:(N-4)]
cShape = ( M/8, N/8-1 )
else:
S1 = S[4:(M-4),4:(N-4)]
cShape = ( (M-1)/8, (N-1)/8 )
D = bdct(S1 - 128)
X = D / base.repmat( self.getQMatrix(channel), cShape )
return np.round(X)
def calibrate(self,*a,**kw):
assert len(self.coef_arrays) == 1
self.coef_arrays[0] = self.getCalibrated(*a,**kw)
def getCalSpatial(self,channel="Y"):
"""
Return the decompressed, calibrated, grayscale image.
A different colour channel can be selected with the channel
argument.
"""
# We calibrate the image, obtaining a JPEG matrix.
# ::
C = self.getCalibrated(channel)
# The rest is straight forward JPEG decompression.
# ::
(M,N) = shape(C)
cShape = (M/8,N/8)
D = C * base.repmat( self.getQMatrix(channel), cShape )
S = np.round( ibdct(D) + 128 )
return S.astype(np.uint8)
# .. toctree::
# :maxdepth: 2
#
# base.py.txt
# dct.py.txt
# compress.py.txt