ILSVRC.py
18.3 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
__author__ = 'chunk'
from . import *
from ..mfeat import HOG, IntraBlockDiff
from ..mspark import SC
from ..common import *
import os, sys
from PIL import Image
from hashlib import md5
import csv
import shutil
import json
import collections
import happybase
from ..mjpeg import *
from ..msteg import *
from ..msteg.steganography import LSB, F3, F4, F5
import numpy as np
from numpy.random import randn
import pandas as pd
from scipy import stats
import random
from subprocess import Popen, PIPE, STDOUT
np.random.seed(sum(map(ord, "whoami")))
package_dir = os.path.dirname(os.path.abspath(__file__))
class DataILSVRC(DataDumperBase):
def __init__(self, base_dir='/media/chunk/Elements/D/data/ImageNet/img/ILSVRC2013_DET_val', category='Train'):
DataDumperBase.__init__(self, base_dir, category)
self.base_dir = base_dir
self.category = category
self.data_dir = os.path.join(self.base_dir, self.category)
self.dst_dir = os.path.join(self.base_dir, 'dst', self.category)
self.list_file = os.path.join(self.dst_dir, 'file-tag.tsv')
self.feat_dir = os.path.join(self.dst_dir, 'Feat')
self.img_dir = os.path.join(self.dst_dir, 'Img')
self.dict_data = {}
self.table_name = self.base_dir.strip('/').split('/')[-1] + '-' + self.category
self.sparker = None
def format(self):
self.extract()
def _hash_copy(self, image):
if not image.endswith('jpg'):
img = Image.open(image)
img.save('../res/tmp.jpg', format='JPEG')
image = '../res/tmp.jpg'
with open(image, 'rb') as f:
index = md5(f.read()).hexdigest()
im = Jpeg(image, key=sample_key)
self.dict_data[index] = [im.image_width, im.image_height, im.image_width * im.image_height, im.getCapacity(),
im.getQuality()]
# self.dict_data[index] = [im.image_width, im.image_height, os.path.getsize(image), im.getQuality()]
# origion:
# dir = base + 'Img/Train/' + index[:3]
dir = os.path.join(self.img_dir, index[:3])
if not os.path.exists(dir):
os.makedirs(dir)
image_path = os.path.join(dir, index[3:] + '.jpg')
# print image_path
if not os.path.exists(image_path):
shutil.copy(image, image_path)
else:
pass
def get_feat(self, image, feattype='ibd', **kwargs):
size = kwargs.get('size', (48, 48))
if feattype == 'hog':
feater = HOG.FeatHOG(size=size)
elif feattype == 'ibd':
feater = IntraBlockDiff.FeatIntraBlockDiff()
else:
raise Exception("Unknown feature type!")
desc = feater.feat(image)
return desc
def extract_feat(self, feattype='ibd'):
if feattype == 'hog':
feater = HOG.FeatHOG(size=(48, 48))
elif feattype == 'ibd':
feater = IntraBlockDiff.FeatIntraBlockDiff()
else:
raise Exception("Unknown feature type!")
list_image = []
with open(self.list_file, 'rb') as tsvfile:
tsvfile = csv.reader(tsvfile, delimiter='\t')
for line in tsvfile:
list_image.append(line[0])
dict_featbuf = {}
for imgname in list_image:
# if imgtag == 'True':
image = os.path.join(self.img_dir, imgname[:3], imgname[3:] + '.jpg')
desc = feater.feat(image)
dict_featbuf[imgname] = desc
for imgname, desc in dict_featbuf.items():
# print imgname, desc
dir = os.path.join(self.feat_dir, imgname[:3])
if not os.path.exists(dir):
os.makedirs(dir)
featpath = os.path.join(dir, imgname[3:].split('.')[0] + '.' + feattype)
with open(featpath, 'wb') as featfile:
featfile.write(json.dumps(desc.tolist()))
def _build_list(self, list_file=None):
if list_file == None:
list_file = self.list_file
assert list_file != None
ordict_img = collections.OrderedDict(sorted(self.dict_data.items(), key=lambda d: d[0]))
with open(list_file, 'w') as f:
tsvfile = csv.writer(f, delimiter='\t')
for key, value in ordict_img.items():
tsvfile.writerow([key] + value)
def _anaylis(self, list_file=None):
if list_file == None:
list_file = self.list_file
assert list_file != None
df_ILS = pd.read_csv(list_file, names=['hash', 'width', 'height', 'size', 'capacity', 'quality'], sep='\t')
length = df_ILS.shape[0]
df_ILS = df_ILS.sort(['capacity', 'size', 'quality'], ascending=True)
rand_class = stats.bernoulli.rvs(0.8, size=length)
df_ILS['rate'] = np.zeros(df_ILS.shape[0], np.float64)
df_ILS['chosen'] = rand_class
df_ILS['class'] = np.zeros(length, np.int32)
df_ILS.to_csv(list_file, header=False, index=False, sep='\t')
def extract(self):
for path, subdirs, files in os.walk(self.data_dir):
for name in files:
imagepath = os.path.join(path, name)
# print imagepath
try:
self._hash_copy(imagepath)
except:
pass
self._build_list()
self._anaylis()
def _embed_outer(self):
self.dict_data = {}
dict_embedresult = {}
os.environ["CLASSPATH"] = os.path.join(package_dir, "../libs/F5/")
cmd = 'java Embed %s %s -e %s -p password -c "stegan by chunk " -q %d'
df_ILS = pd.read_csv(self.list_file,
names=['hash', 'width', 'height', 'size', 'capacity', 'quality', 'chosen', 'class'],
sep='\t')
df_ILS_TARGET = df_ILS[df_ILS['chosen'] == 1]
for hash, size, quality in zip(df_ILS_TARGET['hash'], df_ILS_TARGET['size'], df_ILS_TARGET['quality']):
path_img = os.path.join(self.img_dir, hash[:3], hash[3:] + '.jpg')
if path_img:
print path_img
p = Popen(cmd % (path_img, 'res/tmp.jpg', 'res/toembed', quality), shell=True, stdout=PIPE,
stderr=STDOUT)
dict_embedresult[hash] = [line.strip('\n') for line in p.stdout.readlines()]
try:
self._hash_copy('res/tmp.jpg')
except:
pass
with open(self.list_file + '.embed.log', 'wb') as f:
tsvfile = csv.writer(f, delimiter='\t')
for key, value in dict_embedresult.items():
tsvfile.writerow([key] + value)
self._build_list(self.list_file + '.embed')
# merge
df_ILS_EMBED = pd.read_csv(self.list_file + '.embed', names=['hash', 'width', 'height', 'size', 'quality'],
sep='\t')
length = df_ILS_EMBED.shape[0]
df_ILS_EMBED = df_ILS_EMBED.sort(['size', 'quality'], ascending=True)
df_ILS_EMBED['chosen'] = np.zeros(length, np.int32)
df_ILS_EMBED['class'] = np.ones(length, np.int32)
df_ILS = df_ILS.append(df_ILS_EMBED, ignore_index=True)
df_ILS.to_csv(self.list_file, header=False, index=False, sep='\t')
def _embed_inner(self, rate=None):
self.dict_data = {}
f5 = F5.F5(sample_key, 1)
tmp_img = os.path.join(package_dir, '../res/tmp.jpg')
df_ILS = pd.read_csv(self.list_file,
names=['hash', 'width', 'height', 'size', 'capacity', 'quality', 'rate', 'chosen',
'class'],
sep='\t')
df_ILS_TARGET = df_ILS[df_ILS['chosen'] == 1]
for hash, capacity in zip(df_ILS_TARGET['hash'], df_ILS_TARGET['capacity']):
path_img = os.path.join(self.img_dir, hash[:3], hash[3:] + '.jpg')
if path_img:
print path_img
if rate == None:
embed_rate = f5.embed_raw_data(path_img, os.path.join(package_dir, '../res/toembed'), tmp_img)
else:
assert (rate >= 0 and rate < 1)
# print capacity
hidden = np.random.bytes(int(capacity * rate) / 8)
embed_rate = f5.embed_raw_data(path_img, hidden, tmp_img, frommem=True)
try:
with open(tmp_img, 'rb') as f:
index = md5(f.read()).hexdigest()
im = Jpeg(tmp_img, key=sample_key)
self.dict_data[index] = [im.image_width, im.image_height, im.image_width * im.image_height,
im.getCapacity(),
im.getQuality(), embed_rate]
dir = os.path.join(self.img_dir, index[:3])
if not os.path.exists(dir):
os.makedirs(dir)
image_path = os.path.join(dir, index[3:] + '.jpg')
if not os.path.exists(image_path):
shutil.copy(tmp_img, image_path)
else:
pass
except:
pass
self._build_list(self.list_file + '.embed')
# merge
df_ILS_EMBED = pd.read_csv(self.list_file + '.embed',
names=['hash', 'width', 'height', 'size', 'capacity', 'quality', 'rate'],
sep='\t')
df_ILS_EMBED = df_ILS_EMBED.sort(['rate', 'capacity', 'size', 'quality'], ascending=True)
df_ILS_EMBED['chosen'] = np.zeros(df_ILS_EMBED.shape[0], np.int32)
df_ILS_EMBED['class'] = np.ones(df_ILS_EMBED.shape[0], np.int32)
# print df_ILS_EMBED.dtypes
# print df_ILS.dtypes
# Form the intersection of two Index objects. Sortedness of the result is not guaranteed
df_ILS = df_ILS.append(df_ILS_EMBED, ignore_index=True)
df_ILS.to_csv(self.list_file, header=False, index=False, sep='\t')
def embed(self, rate=None):
self._embed_inner(rate)
def crop(self, size=(300, 300)):
for path, subdirs, files in os.walk(self.data_dir):
for name in files:
image = os.path.join(path, name)
print image
W, H = size
try:
im = Image.open(image)
qt = im.quantization
w, h = im.size
if w < W or h < H:
continue
left, upper = random.randint(0, w - W), random.randint(0, h - H)
im = im.crop((left, upper, left + W, upper + H))
im.save(os.path.join(self.data_dir + '_crop_pil', name), qtables=qt)
except Exception as e:
print '[EXCPT]', e
pass
# try:
# img = cv2.imread(image, cv2.CV_LOAD_IMAGE_UNCHANGED)
# h, w = img.shape[:2]
# if w < 300 or h < 300:
# continue
# left, upper = random.randint(0, w - 300), random.randint(0, h - 300)
# img_crop = img[upper:upper + 300, left:left + 300]
# cv2.imwrite(os.path.join(base_dir, category + '_crop_cv', name), img_crop)
# except Exception as e:
# print '[EXCPT]', e
# pass
def get_table(self):
if self.table != None:
return self.table
if self.connection is None:
c = happybase.Connection('HPC-server')
self.connection = c
tables = self.connection.tables()
if self.table_name not in tables:
families = {'cf_pic': dict(),
'cf_info': dict(max_versions=10),
'cf_tag': dict(),
'cf_feat': dict(),
}
self.connection.create_table(name=self.table_name, families=families)
table = self.connection.table(name=self.table_name)
self.table = table
return table
def delete_table(self, table_name=None, disable=True):
if table_name == None:
table_name = self.table_name
if self.connection is None:
c = happybase.Connection('HPC-server')
self.connection = c
tables = self.connection.tables()
if table_name not in tables:
return False
else:
try:
self.connection.delete_table(table_name, disable)
except:
print 'Exception when deleting table.'
raise
return True
def store_img(self):
if self.table == None:
self.table = self.get_table()
dict_databuf = {}
with open(self.list_file, 'rb') as tsvfile:
tsvfile = csv.reader(tsvfile, delimiter='\t')
for line in tsvfile:
path_img = os.path.join(self.img_dir, line[0][:3], line[0][3:] + '.jpg')
if path_img:
with open(path_img, 'rb') as fpic:
dict_databuf[line[0] + '.jpg'] = fpic.read()
try:
with self.table.batch(batch_size=2000) as b:
for imgname, imgdata in dict_databuf.items():
b.put(imgname, {'cf_pic:data': imgdata})
except ValueError:
raise
def store_info(self, infotype='all'):
if self.table == None:
self.table = self.get_table()
dict_infobuf = {}
with open(self.list_file, 'rb') as tsvfile:
tsvfile = csv.reader(tsvfile, delimiter='\t')
for line in tsvfile:
dict_infobuf[line[0] + '.jpg'] = line[1:-2]
if infotype == 'all':
try:
with self.table.batch(batch_size=5000) as b:
for imgname, imginfo in dict_infobuf.items():
b.put(imgname,
{'cf_info:width': imginfo[0], 'cf_info:height': imginfo[1], 'cf_info:size': imginfo[2],
'cf_info:capacity': imginfo[3],
'cf_info:quality': imginfo[4]})
except ValueError:
raise
else:
raise Exception("Unknown infotype!")
def store_tag(self, tagtype='all'):
if self.table == None:
self.table = self.get_table()
dict_tagbuf = {}
with open(self.list_file, 'rb') as tsvfile:
tsvfile = csv.reader(tsvfile, delimiter='\t')
for line in tsvfile:
dict_tagbuf[line[0] + '.jpg'] = line[-2:]
if tagtype == 'all':
try:
with self.table.batch(batch_size=5000) as b:
for imgname, imgtag in dict_tagbuf.items():
b.put(imgname, {'cf_tag:chosen': imgtag[0], 'cf_tag:class': imgtag[1]})
except ValueError:
raise
else:
raise Exception("Unknown tagtype!")
def store_feat(self, feattype='ibd'):
if self.table == None:
self.table = self.get_table()
dict_featbuf = {}
for path, subdirs, files in os.walk(self.feat_dir):
for name in files:
featpath = os.path.join(path, name)
# print featpath
with open(featpath, 'rb') as featfile:
imgname = path.split('/')[-1] + name.replace('.' + feattype, '.jpg')
dict_featbuf[imgname] = featfile.read()
try:
with self.table.batch(batch_size=5000) as b:
for imgname, featdesc in dict_featbuf.items():
b.put(imgname, {'cf_feat:' + feattype: featdesc})
except ValueError:
raise
pass
def load_data(self, mode='local', feattype='ibd', tagtype='class'):
INDEX = []
X = []
Y = []
if mode == "local":
dict_dataset = {}
if feattype == 'coef': # raw
with open(self.list_file, 'rb') as tsvfile:
tsvfile = csv.reader(tsvfile, delimiter='\t')
for line in tsvfile:
hash = line[0]
tag = line[-1]
image = os.path.join(self.img_dir, hash[:3], hash[3:] + '.jpg')
if image:
im = Jpeg(image, key=sample_key)
dict_dataset[hash] = (tag, im.getCoefMatrix(channel='Y'))
for tag, feat in dict_dataset.values():
X.append(feat)
Y.append(int(tag))
else:
with open(self.list_file, 'rb') as tsvfile:
tsvfile = csv.reader(tsvfile, delimiter='\t')
for line in tsvfile:
hash = line[0]
tag = line[-1]
path_feat = os.path.join(self.feat_dir, hash[:3], hash[3:] + '.' + feattype)
if path_feat:
with open(path_feat, 'rb') as featfile:
dict_dataset[hash] = (tag, json.loads(featfile.read()))
for tag, feat in dict_dataset.values():
# X.append([item for sublist in feat for subsublist in sublist for item in subsublist])
X.append(np.array(feat).ravel().tolist())
Y.append(int(tag))
elif mode == "hbase": # remote
if self.table == None:
self.table = self.get_table()
col_feat, col_tag = 'cf_feat:' + feattype, 'cf_tag:' + tagtype
for key, data in self.table.scan(columns=[col_feat, col_tag]):
X.append(
[item for sublist in json.loads(data[col_feat]) for subsublist in sublist for item in subsublist])
Y.append(int(data[col_tag]))
elif mode == "spark": # cluster
if self.sparker == None:
self.sparker = SC.Sparker(host='HPC-server', appname='ImageCV', master='spark://HPC-server:7077')
result = self.sparker.read_hbase(self.table_name) # result = {key:[feat,tag],...}
for feat, tag in result:
X.append(feat)
Y.append(tag)
else:
raise Exception("Unknown mode!")
return X, Y