SC.py
9.38 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
# -*- coding: utf-8 -*-
__author__ = 'chunk'
from ..common import *
from .dependencies import *
from . import *
# from ..mdata import MSR, CV, ILSVRC, ILSVRC_S
from ..mjpeg import *
from ..msteg import *
from ..msteg.steganography import LSB, F3, F4, F5
from ..mfeat import IntraBlockDiff
import sys
from pyspark import SparkConf, SparkContext
from pyspark.mllib.classification import LogisticRegressionWithSGD, SVMWithSGD
from pyspark.mllib.regression import LabeledPoint
from numpy import array
import json
import pickle
import tempfile
import numpy as np
from scipy import stats
from hashlib import md5
np.random.seed(sum(map(ord, "whoami")))
package_dir = os.path.dirname(os.path.abspath(__file__))
def rddparse_data_CV(raw_row):
"""
input: (u'key0',u'cf_feat:hog:[0.056273,...]--%--cf_pic:data:\ufffd\ufffd\...--%--cf_tag:hog:True')
return: ([0.056273,...],1)
"""
data = raw_row[1].split('--%--')
feat = json.loads(data[0].split(':')[-1])
tag = 1 if data[-1].split(':')[-1] == 'True' else 0
return (feat, tag)
def rddparse_data_ILS(raw_row):
"""
input: (u'key0',u'cf_feat:hog:[0.056273,...]--%--cf_pic:data:\ufffd\ufffd\...--%--cf_tag:hog:True')
return: ([0.056273,...],1)
In fact we can also use mapValues.
"""
key = raw_row[0]
# if key == '04650c488a2b163ca8a1f52da6022f03.jpg':
# with open('/tmp/hhhh','wb') as f:
# f.write(raw_row[1].decode('unicode-escape')).encode('latin-1')
items = raw_row[1].decode('unicode-escape').encode('latin-1').split('--%--')
data = items[0].split('cf_pic:data:')[-1]
return (key, data)
def rddparse_all_ILS(raw_row):
key = raw_row[0]
items = raw_row[1].decode('unicode-escape').encode('latin-1').split('--%--')
data = [items[0].split('cf_pic:data:')[-1]] + [json.loads(item.split(':')[-1]) for item in items[1:]]
return (key, data)
def rddinfo_ILS(img, info_rate=None, tag_chosen=None, tag_class=None):
"""
Tempfile is our friend. (?)
"""
info_rate = info_rate if info_rate != None else 0.0
tag_chosen = tag_chosen if tag_chosen != None else stats.bernoulli.rvs(0.8)
tag_class = tag_class if tag_class != None else 0
try:
tmpf = tempfile.NamedTemporaryFile(suffix='.jpg', mode='w+b')
tmpf.write(img)
tmpf.seek(0)
im = Jpeg(tmpf.name, key=sample_key)
info = [
im.image_width,
im.image_height,
im.image_width * im.image_height,
im.getCapacity(),
im.getQuality(),
info_rate,
tag_chosen,
tag_class
]
return info
except Exception as e:
print e
raise
finally:
tmpf.close()
def rddembed_ILS(row):
"""
input:
e.g. row =('row1',[1,3400,'hello'])
return:
newrow = ('row2',[34,5400,'embeded'])
"""
items = row[1]
capacity, rate, chosen = int(items[4]), float(items[6]), int(items[7])
if chosen == 0:
return None
try:
tmpf_src = tempfile.NamedTemporaryFile(suffix='.jpg', mode='w+b')
tmpf_src.write(items[0])
tmpf_src.seek(0)
tmpf_dst = tempfile.NamedTemporaryFile(suffix='.jpg', mode='w+b')
steger = F5.F5(sample_key, 1)
if rate == None:
embed_rate = steger.embed_raw_data(tmpf_src.name, os.path.join(package_dir, '../res/toembed'),
tmpf_dst.name)
else:
assert (rate >= 0 and rate < 1)
# print capacity
hidden = np.random.bytes(int(int(capacity) * rate) / 8)
embed_rate = steger.embed_raw_data(tmpf_src.name, hidden, tmpf_dst.name, frommem=True)
tmpf_dst.seek(0)
raw = tmpf_dst.read()
index = md5(raw).hexdigest()
return (index + '.jpg', [raw] + rddinfo_ILS(raw, embed_rate, 0, 1))
except Exception as e:
print e
raise
finally:
tmpf_src.close()
tmpf_dst.close()
def _get_feat(image, feattype='ibd', **kwargs):
if feattype == 'ibd':
feater = IntraBlockDiff.FeatIntraBlockDiff()
else:
raise Exception("Unknown feature type!")
desc = feater.feat(image)
return desc
def rddfeat_ILS(row, feattype='ibd', **kwargs):
items = row[1]
capacity, rate, chosen = int(items[4]), float(items[6]), int(items[7])
try:
tmpf_src = tempfile.NamedTemporaryFile(suffix='.jpg', mode='w+b')
tmpf_src.write(items[0])
tmpf_src.seek(0)
desc = json.dumps(_get_feat(tmpf_src.name, feattype=feattype).tolist())
return (row[0], row[1].append(desc))
except Exception as e:
print e
raise
finally:
tmpf_src.close()
def format_out(row, cols):
"""
input:
e.g. row =('row1',[1,3400,'hello'])
cols = [['cf_info', 'id'], ['cf_info', 'size'], ['cf_tag', 'desc']]
return:
[('row1',['row1', 'cf_info', 'id', '1']),('row1',['row1', 'cf_info', 'size', '3400']),('row1',['row1', 'cf_tag', 'desc', 'hello'])]
"""
puts = []
key = row[0]
for data, col in zip(row[1], cols):
puts.append((key, [key] + col + [str(data)]))
return puts
class Sparker(object):
def __init__(self, host='HPC-server', appname='NewPySparkApp', **kwargs):
load_env()
self.host = host
self.appname = appname
self.master = kwargs.get('master', 'spark://%s:7077' % self.host)
self.conf = SparkConf()
self.conf.setSparkHome(self.host) \
.setMaster(self.master) \
.setAppName(self.appname)
# self.conf.set("spark.akka.frameSize","10685760")
# self.conf.set("spark.driver.extraClassPath", extraClassPath) \
# .set("spark.executor.extraClassPath", extraClassPath) \
# .set("SPARK_CLASSPATH", extraClassPath) \
# .set("spark.driver.memory", "1G") \
# .set("spark.yarn.jar", sparkJar)
self.sc = SparkContext(conf=self.conf)
self.model = None
def read_hbase(self, table_name, func=None, collect=False):
"""
ref - http://happybase.readthedocs.org/en/latest/user.html#retrieving-data
Filter format:
columns=['cf1:col1', 'cf1:col2']
or
columns=['cf1']
"""
hconf = {"hbase.zookeeper.quorum": self.host,
"hbase.mapreduce.inputtable": table_name,
}
hbase_rdd = self.sc.newAPIHadoopRDD(inputFormatClass=hparams["inputFormatClass"],
keyClass=hparams["readKeyClass"],
valueClass=hparams["readValueClass"],
keyConverter=hparams["readKeyConverter"],
valueConverter=hparams["readValueConverter"],
conf=hconf)
parser = func if func != None else rddparse_data_CV
hbase_rdd = hbase_rdd.map(lambda x: parser(x))
if collect:
return hbase_rdd.collect()
else:
return hbase_rdd
def write_hbase(self, table_name, data, fromrdd=False, columns=None):
"""
Data Format: (Deprecated)
e.g. [["row8", "f1", "", "caocao cao"], ["row9", "f1", "c1", "asdfg hhhh"]]
Data(from dictionary):
e.g. data ={'row1':[1,3400,'hello'], 'row2':[34,5000,'here in mine']},
cols = ['cf_info:id', 'cf_info:size', 'cf_tag:desc']
Data(from Rdd):
e.g. data =[('row1',[1,3400,'hello']), ('row2',[34,5000,'here in mine'])],
cols = ['cf_info:id', 'cf_info:size', 'cf_tag:desc']
"""
hconf = {"hbase.zookeeper.quorum": self.host,
"hbase.mapreduce.inputtable": table_name,
"hbase.mapred.outputtable": table_name,
"mapreduce.outputformat.class": hparams["outputFormatClass"],
"mapreduce.job.output.key.class": hparams["writeKeyClass"],
"mapreduce.job.output.value.class": hparams["writeValueClass"],
}
cols = [col.split(':') for col in columns]
if not fromrdd:
rdd_data = self.sc.parallelize(data)
else:
rdd_data = data
rdd_data.flatMap(lambda x: format_out(x, cols)).saveAsNewAPIHadoopDataset(
conf=hconf,
keyConverter=hparams["writeKeyConverter"],
valueConverter=hparams["writeValueConverter"])
def train_svm(self, rdd_labeled):
svm = SVMWithSGD.train(rdd_labeled)
self.model = svm
return svm
def train_svm(self, X, Y):
# data = []
# for feat, tag in zip(X, Y):
# data.append(LabeledPoint(tag, feat))
# svm = SVMWithSGD.train(self.sc.parallelize(data))
hdd_data = self.sc.parallelize(zip(X, Y), 20).map(lambda x: LabeledPoint(x[1], x[0]))
svm = SVMWithSGD.train(hdd_data)
self.model = svm
# with open('res/svm_spark.model', 'wb') as modelfile:
# model = pickle.dump(svm, modelfile)
return svm
def predict_svm(self, x, model=None):
if model is None:
if self.model != None:
model = self.model
else:
# with open('res/svm_spark.model', 'rb') as modelfile:
# model = pickle.load(modelfile)
raise Exception("No model available!")
return model.predict(x)
def test_svm(self, X, Y, model=None):
pass