SC.py 16.9 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482
# -*- coding: utf-8 -*-
__author__ = 'chunk'

from ..common import *
from .dependencies import *
from . import *
# from ..mdata import MSR, CV, ILSVRC, ILSVRC_S

from ..mjpeg import *
from ..msteg import *
from ..msteg.steganography import LSB, F3, F4, F5
from ..mfeat import IntraBlockDiff

import sys
from pyspark import RDD
from pyspark import SparkConf, SparkContext
from pyspark.mllib.classification import LogisticRegressionWithSGD, SVMWithSGD
from pyspark.mllib.regression import LabeledPoint
from numpy import array
import json
import pickle
import tempfile

import numpy as np
from scipy import stats
from hashlib import md5

np.random.seed(sum(map(ord, "whoami")))
package_dir = os.path.dirname(os.path.abspath(__file__))


def rddparse_data_CV(raw_row):
    """
    input: (u'key0',u'cf_feat:hog:[0.056273,...]--%--cf_pic:data:\ufffd\ufffd\...--%--cf_tag:hog:True')
    return: ([0.056273,...],1)
    """
    data = raw_row[1].split('--%--')
    feat = json.loads(data[0].split(':')[-1])
    tag = 1 if data[-1].split(':')[-1] == 'True' else 0
    return (feat, tag)


def rddparse_data_ILS(raw_row):
    """
    input: (u'key0',u'cf_feat:hog:[0.056273,...]--%--cf_pic:data:\ufffd\ufffd\...--%--cf_tag:hog:True')
    return: ([0.056273,...],1)

    In fact we can also use mapValues.
    """
    key = raw_row[0]
    # if key == '04650c488a2b163ca8a1f52da6022f03.jpg':
    # with open('/tmp/hhhh','wb') as f:
    # f.write(raw_row[1].decode('unicode-escape')).encode('latin-1')
    items = raw_row[1].decode('unicode-escape').encode('latin-1').split('--%--')
    data = items[0].split('cf_pic:data:')[-1]
    return (key, data)


def rddparse_all_ILS(raw_row):
    """
    Deprecated
    """
    key = raw_row[0]
    items = raw_row[1].decode('unicode-escape').encode('latin-1').split('--%--')

    # @TODO
    # N.B "ValueError: No JSON object could be decoded" Because the spark-hbase IO is based on strings.
    # And the order of items is not as expected. See ../res/row-sample.txt or check in hbase shell for that.

    data = [items[0].split('cf_pic:data:')[-1]] + [json.loads(item.split(':')[-1]) for item in
                                                   items[1:]]

    return (key, data)


def rddparse_dataset_ILS(raw_row):
    if raw_row[0] == '04650c488a2b163ca8a1f52da6022f03.jpg':
        print raw_row
    items = raw_row[1].decode('unicode-escape').encode('latin-1').split('--%--')
    # tag = int(items[-2].split('cf_tag:' + tagtype)[-1])
    # feat = [item for sublist in json.loads(items[-1].split('cf_feat:' + feattype)[-1]) for subsublist in sublist for item in subsublist]
    tag = int(items[-1].split(':')[-1])
    feat = [item for sublist in json.loads(items[0].split(':')[-1]) for subsublist in sublist for
            item in subsublist]

    return (tag, feat)


def rddinfo_ILS(img, info_rate=None, tag_chosen=None, tag_class=None):
    """
    Tempfile is our friend. (?)
    """
    info_rate = info_rate if info_rate != None else 0.0
    tag_chosen = tag_chosen if tag_chosen != None else stats.bernoulli.rvs(0.8)
    tag_class = tag_class if tag_class != None else 0
    try:
        tmpf = tempfile.NamedTemporaryFile(suffix='.jpg', mode='w+b', delete=True)
        tmpf.write(img)
        tmpf.seek(0)
        im = Jpeg(tmpf.name, key=sample_key)
        info = [
            im.image_width,
            im.image_height,
            im.image_width * im.image_height,
            im.getCapacity(),
            im.getQuality(),
            info_rate,
            tag_chosen,
            tag_class
        ]
        return info
    except Exception as e:
        print e
        raise
    finally:
        tmpf.close()


def rddembed_ILS(row, rate=None):
    """
    input:
        e.g. row =('row1',[1,3400,'hello'])
    return:
        newrow = ('row2',[34,5400,'embeded'])
    """
    items = row[1]
    capacity, chosen = int(items[4]), int(items[7])
    if chosen == 0:
        return None
    try:
        tmpf_src = tempfile.NamedTemporaryFile(suffix='.jpg', mode='w+b')
        tmpf_src.write(items[0])
        tmpf_src.seek(0)
        tmpf_dst = tempfile.NamedTemporaryFile(suffix='.jpg', mode='w+b')

        steger = F5.F5(sample_key, 1)

        if rate == None:
            embed_rate = steger.embed_raw_data(tmpf_src.name,
                                               os.path.join(package_dir, '../res/toembed'),
                                               tmpf_dst.name)
        else:
            assert (rate >= 0 and rate < 1)
            # print capacity
            hidden = np.random.bytes(int(int(capacity) * rate) / 8)
            embed_rate = steger.embed_raw_data(tmpf_src.name, hidden, tmpf_dst.name, frommem=True)

        tmpf_dst.seek(0)
        raw = tmpf_dst.read()
        index = md5(raw).hexdigest()

        return (index + '.jpg', [raw] + rddinfo_ILS(raw, embed_rate, 0, 1))

    except Exception as e:
        print e
        raise
    finally:
        tmpf_src.close()
        tmpf_dst.close()


def rddembed_ILS_EXT(row, rate=None):
    """
    input:
        e.g. row =('row1',[1,3400,'hello'])
    return:
        newrow = ('row2',[34,5400,'embeded']) or NULL
        [row,newrow]
    """
    items = row[1]
    capacity, chosen = int(items[4]), int(items[7])
    if chosen == 0:
        return [row]
    try:
        tmpf_src = tempfile.NamedTemporaryFile(suffix='.jpg', mode='w+b')
        tmpf_src.write(items[0])
        tmpf_src.seek(0)
        tmpf_dst = tempfile.NamedTemporaryFile(suffix='.jpg', mode='w+b')

        steger = F5.F5(sample_key, 1)

        if rate == None:
            embed_rate = steger.embed_raw_data(tmpf_src.name,
                                               os.path.join(package_dir, '../res/toembed'),
                                               tmpf_dst.name)
        else:
            assert (rate >= 0 and rate < 1)
            # print capacity
            hidden = np.random.bytes(int(int(capacity) * rate) / 8)
            embed_rate = steger.embed_raw_data(tmpf_src.name, hidden, tmpf_dst.name, frommem=True)

        tmpf_dst.seek(0)
        raw = tmpf_dst.read()
        index = md5(raw).hexdigest()

        return [row, (index + '.jpg', [raw] + rddinfo_ILS(raw, embed_rate, 0, 1))]

    except Exception as e:
        print e
        raise
    finally:
        tmpf_src.close()
        tmpf_dst.close()


def _get_feat(image, feattype='ibd', **kwargs):
    if feattype == 'ibd':
        feater = IntraBlockDiff.FeatIntraBlockDiff()
    else:
        raise Exception("Unknown feature type!")

    desc = feater.feat(image)

    return desc


def rddfeat_ILS(items, feattype='ibd', **kwargs):
    try:
        tmpf_src = tempfile.NamedTemporaryFile(suffix='.jpg', mode='w+b')
        tmpf_src.write(items[0])
        tmpf_src.seek(0)

        desc = json.dumps(_get_feat(tmpf_src.name, feattype=feattype).tolist())
        # print 'desccccccccccccccccccc',desc
        return items + [desc]

    except Exception as e:
        print e
        raise
    finally:
        tmpf_src.close()


def format_out(row, cols, withdata=False):
    """
    input:
        e.g. row =('row1',[1,3400,'hello'])
            cols = [['cf_info', 'id'], ['cf_info', 'size'], ['cf_tag', 'desc']]
    return:
        [('row1',['row1', 'cf_info', 'id', '1']),('row1',['row1', 'cf_info', 'size', '3400']),('row1',['row1', 'cf_tag', 'desc', 'hello'])]
    """
    puts = []
    key = row[0]
    # if key == '04650c488a2b163ca8a1f52da6022f03.jpg':
    # print row
    if not withdata:
        for data, col in zip(row[1][1:], cols[1:]):
            puts.append((key, [key] + col + [str(data)]))
    else:
        for data, col in zip(row[1], cols):
            puts.append((key, [key] + col + [str(data)]))
    return puts


# scconf = SparkConf()
# scconf.setSparkHome("HPC-server") \
# .setMaster("spark://HPC-server:7077") \
#     .setAppName("example")
# sc = SparkContext(conf=scconf)
#
#
# def read_hbase(table_name, func=None, collect=False):
#     """
#     ref - http://happybase.readthedocs.org/en/latest/user.html#retrieving-data
#
#     Filter format:
#         columns=['cf1:col1', 'cf1:col2']
#         or
#         columns=['cf1']
#
#     """
#
#     hconf = {
#         "hbase.zookeeper.quorum": "HPC-server, HPC, HPC2",
#         # "hbase.zookeeper.quorum": self.host,
#         "hbase.mapreduce.inputtable": table_name,
#     }
#
#     hbase_rdd = sc.newAPIHadoopRDD(inputFormatClass=hparams["inputFormatClass"],
#                                            keyClass=hparams["readKeyClass"],
#                                            valueClass=hparams["readValueClass"],
#                                            keyConverter=hparams["readKeyConverter"],
#                                            valueConverter=hparams["readValueConverter"],
#                                            conf=hconf)
#
#     parser = func if func != None else rddparse_data_CV
#     hbase_rdd = hbase_rdd.map(lambda x: parser(x))
#
#     if collect:
#         return hbase_rdd.collect()
#     else:
#         return hbase_rdd
#
#
# def write_hbase(table_name, data, fromrdd=False, columns=None, withdata=False):
#     """
#     Data Format: (Deprecated)
#         e.g. [["row8", "f1", "", "caocao cao"], ["row9", "f1", "c1", "asdfg hhhh"]]
#
#     Data(from dictionary):
#         e.g. data ={'row1':[1,3400,'hello'], 'row2':[34,5000,'here in mine']},
#             cols = ['cf_info:id', 'cf_info:size', 'cf_tag:desc']
#     Data(from Rdd):
#         e.g. data =[('row1',[1,3400,'hello']), ('row2',[34,5000,'here in mine'])],
#             cols = ['cf_info:id', 'cf_info:size', 'cf_tag:desc']
#     """
#     hconf = {
#         "hbase.zookeeper.quorum": "HPC-server, HPC, HPC2",  # "hbase.zookeeper.quorum": self.host,
#         "hbase.mapreduce.inputtable": table_name,
#         "hbase.mapred.outputtable": table_name,
#         "mapreduce.outputformat.class": hparams["outputFormatClass"],
#         "mapreduce.job.output.key.class": hparams["writeKeyClass"],
#         "mapreduce.job.output.value.class": hparams["writeValueClass"],
#     }
#     cols = [col.split(':') for col in columns]
#     if not fromrdd:
#         rdd_data = sc.parallelize(data)
#     else:
#         rdd_data = data
#
#     rdd_data.flatMap(lambda x: format_out(x, cols, withdata=withdata)).saveAsNewAPIHadoopDataset(
#         conf=hconf,
#         keyConverter=hparams["writeKeyConverter"],
#         valueConverter=hparams["writeValueConverter"])


class Sparker(object):
    def __init__(self, host='HPC-server', appname='NewPySparkApp', **kwargs):
        load_env()
        self.host = host
        self.appname = appname
        self.master = kwargs.get('master', 'spark://%s:7077' % self.host)
        self.conf = SparkConf()
        self.conf.setSparkHome(self.host) \
            .setMaster(self.master) \
            .setAppName(self.appname)

        # self.conf.set("spark.akka.frameSize","10685760")
        # self.conf.set("spark.driver.extraClassPath", extraClassPath) \
        # .set("spark.executor.extraClassPath", extraClassPath) \
        # .set("SPARK_CLASSPATH", extraClassPath) \
        # .set("spark.driver.memory", "1G") \
        # .set("spark.yarn.jar", sparkJar)

        self.sc = SparkContext(conf=self.conf)

        self.model = None

    def read_hbase(self, table_name, func=None, collect=False, parallelism=40):
        """
        ref - http://happybase.readthedocs.org/en/latest/user.html#retrieving-data

        Filter format:
            columns=['cf1:col1', 'cf1:col2']
            or
            columns=['cf1']

        """

        hconf = {
            "hbase.zookeeper.quorum": "HPC-server, HPC, HPC2",
            # "hbase.zookeeper.quorum": self.host,
            "hbase.mapreduce.inputtable": table_name,
        }

        hbase_rdd = self.sc.newAPIHadoopRDD(inputFormatClass=hparams["inputFormatClass"],
                                            keyClass=hparams["readKeyClass"],
                                            valueClass=hparams["readValueClass"],
                                            keyConverter=hparams["readKeyConverter"],
                                            valueConverter=hparams["readValueConverter"],
                                            conf=hconf)

        parser = func if func != None else rddparse_data_CV
        hbase_rdd = hbase_rdd.map(lambda x: parser(x))

        if collect:
            return hbase_rdd.collect()
        else:
            """
            RDD-hbase bug fixed.(with 'repartition()')
            <http://stackoverflow.com/questions/29011574/how-is-spark-partitioning-from-hdfs>

            When Spark reads a file from HDFS, it creates a single partition for a single input split. Input split is set by the Hadoop InputFormat used to read this file. For instance, if you use textFile() it would be TextInputFormat in Hadoop, which would return you a single partition for a single block of HDFS (but the split between partitions would be done on line split, not the exact block split), unless you have a compressed text file. In case of compressed file you would get a single partition for a single file (as compressed text files are not splittable).
            When you call rdd.repartition(x) it would perform a shuffle of the data from N partititons you have in rdd to x partitions you want to have, partitioning would be done on round robin basis.
            If you have a 30GB uncompressed text file stored on HDFS, then with the default HDFS block size setting (128MB) it would be stored in 235 blocks, which means that the RDD you read from this file would have 235 partitions. When you call repartition(1000) your RDD would be marked as to be repartitioned, but in fact it would be shuffled to 1000 partitions only when you will execute an action on top of this RDD (lazy execution concept)

            """
            return hbase_rdd.repartition(parallelism)

    def write_hbase(self, table_name, data, fromrdd=False, columns=None, withdata=False):
        """
        Data Format: (Deprecated)
            e.g. [["row8", "f1", "", "caocao cao"], ["row9", "f1", "c1", "asdfg hhhh"]]

        Data(from dictionary):
            e.g. data ={'row1':[1,3400,'hello'], 'row2':[34,5000,'here in mine']},
                cols = ['cf_info:id', 'cf_info:size', 'cf_tag:desc']
        Data(from Rdd):
            e.g. data =[('row1',[1,3400,'hello']), ('row2',[34,5000,'here in mine'])],
                cols = ['cf_info:id', 'cf_info:size', 'cf_tag:desc']
        """
        hconf = {
            "hbase.zookeeper.quorum": "HPC-server, HPC, HPC2",
        # "hbase.zookeeper.quorum": self.host,
            "hbase.mapreduce.inputtable": table_name,
            "hbase.mapred.outputtable": table_name,
            "mapreduce.outputformat.class": hparams["outputFormatClass"],
            "mapreduce.job.output.key.class": hparams["writeKeyClass"],
            "mapreduce.job.output.value.class": hparams["writeValueClass"],
        }
        cols = [col.split(':') for col in columns]
        if not fromrdd:
            rdd_data = self.sc.parallelize(data)
        else:
            rdd_data = data

        rdd_data.flatMap(
            lambda x: format_out(x, cols, withdata=withdata)).saveAsNewAPIHadoopDataset(
            conf=hconf,
            keyConverter=hparams["writeKeyConverter"],
            valueConverter=hparams["writeValueConverter"])

    def train_svm(self, X, Y=None):

        if Y == None:
            # From rdd_labeled
            assert isinstance(X, RDD)
            svm = SVMWithSGD.train(X)
        else:
            # data = []
            # for feat, tag in zip(X, Y):
            # data.append(LabeledPoint(tag, feat))
            # svm = SVMWithSGD.train(self.sc.parallelize(data))
            hdd_data = self.sc.parallelize(zip(X, Y), 20).map(lambda x: LabeledPoint(x[1], x[0]))
            svm = SVMWithSGD.train(hdd_data)
        self.model = svm
        # with open('res/svm_spark.model', 'wb') as modelfile:
        # model = pickle.dump(svm, modelfile)

        return self.model

    def predict_svm(self, x, collect=False, model=None):
        """
        From pyspark.mlib.classification.py:

            >> svm.predict([1.0])
            1
            >> svm.predict(sc.parallelize([[1.0]])).collect()
            [1]
            >> svm.clearThreshold()
            >> svm.predict(array([1.0]))
            1.25...
        """
        if model is None:
            if self.model != None:
                model = self.model
            else:
                # with open('res/svm_spark.model', 'rb') as modelfile:
                # model = pickle.load(modelfile)
                raise Exception("No model available!")

        res = model.predict(x)
        if collect:
            return res.collect()
        else:
            return res

    def test_svm(self, X, Y=None, model=None):
        if model is None:
            if self.model != None:
                model = self.model
            else:
                # with open('res/svm_spark.model', 'rb') as modelfile:
                # model = pickle.load(modelfile)
                raise Exception("No model available!")

        if Y == None:
            assert isinstance(X, RDD)
            pass
        else:
            result_Y = np.array(self.predict_svm(X, collect=True))
            return np.mean(Y == result_Y)