embeded2 5.34 KB
this is to be embeded.
//0216
vim of clang - https://github.com/JBakamovic/yavide
# Usage overview
Category                          | Shortcut                          | Description
--------------------------------- | --------------------------------- | ---------------------------------
**Project management**            |                                   |
                                  | `<Ctrl-s>n`	                      | Create new project
                                  | `<Ctrl-s>i`                       | Import project with already existing code base
                                  | `<Ctrl-s>o`                       | Open project
                                  | `<Ctrl-s>c`                       | Close project
                                  | `<Ctrl-s>s`                       | Save project
                                  | `<Ctrl-s>d`                       | Delete project
**Buffer management**             |                                   |
                                  | `<Ctrl-c>`			              | Close current buffer
                                  | `<Ctrl-s>`                        | Save current buffer
                                  | `<Ctrl-Tab>`			          | Go to next buffer
                                  | `<Ctrl-Shift-Tab>`	              | Go to previous buffer
                                  | `<Ctrl-Down>`			          | Scroll buffer by one line (down)
                                  | `<Ctrl-Up>`			              | Scroll buffer by one line (up)
**Buffer modes**                  |                                   | 
                                  | `<ESC>`                           | Enter the `normal` mode
                                  | `<a>`					          | Enter the `insert` mode (append after cursor)
                                  | `<i>`					          | Enter the `insert` mode (insert before cursor)
                                  | `<Shift-v>`	                      |	Enter the `visual` mode (line mode)
                                  | `<v>`					          | Enter the `visual` mode (character mode)
**Buffer editing**                |                                   | 
                                  | `<Ctrl-a>`                        | Select all
                                  | `<Ctrl-x>`                        | Cut
                                  | `<Ctrl-c>`                        | Copy
                                  | `<Ctrl-v>`                        | Paste
                                  | `<Ctrl-z>`                        | Undo
                                  | `<Ctrl-r>`                        | Redo
                                  | `<Shift-s>`				          | Delete the whole line
===========多维随机变量!!!!!!!!!===========

1.协方差矩阵:
	对角相乘,然后相除,得到的比值就是相关系数的平方。
	所以协方差矩阵用于查看各个随机变量之间的(线性)相关关系。
2.



===========参数估计 及 假设检验!!!!!!!!!===========

1.经典统计和贝叶斯统计的区别:
	p(x;theta),p(x|theta)
2.page 286 - 我们的卡方检测呼之欲出。。。 χ2
3.“显著性”这一说法的来历
4.
5.

http://zh.wikipedia.org/wiki/%E7%9A%AE%E7%88%BE%E6%A3%AE%E5%8D%A1%E6%96%B9%E6%AA%A2%E5%AE%9A

“皮尔森卡方检定”可用于两种情境的变项比较:适配度检定,和独立性检定。

“适配度检定”验证一组观察值的次数分配是否异于理论上的分配。
“独立性检定”验证从两个变量抽出的配对观察值组是否互相独立(例如:每次都从A国和B国各抽一个人,看他们的反应是否与国籍无关)。
不管哪个检定都包含三个步骤:

计算卡方检定的统计值“ \chi^2 ”:把每一个观察值和理论值的差做平方后、除以理论值、再加总。
计算 \chi^2 统计值的自由度“df”。
依据研究者设定的置信水平,查出自由度为 df 的卡方分配临界值,比较它与第1步骤得出的 \chi^2 统计值,推论能否拒绝虚无假设。





//0317

http://python.jobbole.com/81131/

# initialize the list of image URLs to download
urls = [
    "http://www.pyimagesearch.com/wp-content/uploads/2015/01/opencv_logo.png",
    "http://www.pyimagesearch.com/wp-content/uploads/2015/01/google_logo.png",
    "http://www.pyimagesearch.com/wp-content/uploads/2014/12/adrian_face_detection_sidebar.png",
]

# loop over the image URLs
for url in urls:
    # download the image URL and display it
    print "downloading %s" % (url)
    image = url_to_image(url)
    cv2.imshow("Image", image)
    cv2.waitKey(0)

# METHOD #2: scikit-image
from skimage import io

# loop over the image URLs
for url in urls:
    # download the image using scikit-image
    print "downloading %s" % (url)
    image = io.imread(url)
    cv2.imshow("Incorrect", image)
    cv2.imshow("Correct", cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
    cv2.waitKey(0)





判别式模型(Discriminative Model)是直接对条件概率p(y|x;θ)建模。常见的判别式模型有 线性回归模型、线性判别分析、支持向量机SVM、神经网络等。

	即得到的模型是一个分类器

生成式模型(Generative Model)则会对x和y的联合分布p(x,y)建模,然后通过贝叶斯公式来求得p(yi|x),然后选取使得p(yi|x)最大的yi,即:

	即得到的模型是一个生成器