SC.py
5.36 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
__author__ = 'chunk'
from ..common import *
from .dependencies import *
from . import *
import sys
from pyspark import SparkConf, SparkContext
from pyspark.mllib.classification import LogisticRegressionWithSGD, SVMWithSGD
from pyspark.mllib.regression import LabeledPoint
from numpy import array
import json
import pickle
def parse_cv(raw_row):
"""
input: (u'key0',u'cf_feat:hog:[0.056273,...]--%--cf_pic:data:\ufffd\ufffd\...--%--cf_tag:hog:True')
return: ([0.056273,...],1)
"""
data = raw_row[1].split('--%--')
feat = json.loads(data[0].split(':')[-1])
tag = 1 if data[-1].split(':')[-1] == 'True' else 0
return (feat, tag)
def format_out(row, cols):
"""
input:
e.g. row =('row1',[1,3400,'hello'])
cols = [['cf_info', 'id'], ['cf_info', 'size'], ['cf_tag', 'desc']]
return:
[('row1',['row1', 'cf_info', 'id', 1]),('row1',['row1', 'cf_info', 'size', 3400]),('row1',['row1', 'cf_tag', 'desc', 'hello'])]
"""
puts = []
key = row[0]
for data, col in zip(row[1], cols):
puts.append((key, [key] + col + [data]))
return puts
class Sparker(object):
def __init__(self, host='HPC-server', appname='NewPySparkApp', **kwargs):
load_env()
self.host = host
self.appname = appname
self.master = kwargs.get('master', 'spark://%s:7077' % self.host)
print self.master
self.conf = SparkConf()
self.conf.setSparkHome(self.host) \
.setMaster(self.master) \
.setAppName(self.appname)
# self.conf.set("spark.akka.frameSize","10685760")
# self.conf.set("spark.driver.extraClassPath", extraClassPath) \
# .set("spark.executor.extraClassPath", extraClassPath) \
# .set("SPARK_CLASSPATH", extraClassPath) \
# .set("spark.driver.memory", "1G") \
# .set("spark.yarn.jar", sparkJar)
self.sc = SparkContext(conf=self.conf)
self.model = None
def read_hbase(self, table_name, func=None, collect=False):
"""
ref - http://happybase.readthedocs.org/en/latest/user.html#retrieving-data
Filter format:
columns=['cf1:col1', 'cf1:col2']
or
columns=['cf1']
"""
hconf = {"hbase.zookeeper.quorum": self.host,
"hbase.mapreduce.inputtable": table_name,
}
hbase_rdd = self.sc.newAPIHadoopRDD(inputFormatClass=hparams["inputFormatClass"],
keyClass=hparams["readKeyClass"],
valueClass=hparams["readValueClass"],
keyConverter=hparams["readKeyConverter"],
valueConverter=hparams["readValueConverter"],
conf=hconf)
parser = func if func != None else parse_cv
hbase_rdd = hbase_rdd.map(lambda x: parser(x))
if collect:
return hbase_rdd.collect()
else:
return hbase_rdd
def write_hbase(self, table_name, data, fromrdd=False, columns=None):
"""
Data Format: (Deprecated)
e.g. [["row8", "f1", "", "caocao cao"], ["row9", "f1", "c1", "asdfg hhhh"]]
Data(from dictionary):
e.g. data ={'row1':[1,3400,'hello'], 'row2':[34,5000,'here in mine']},
cols = ['cf_info:id', 'cf_info:size', 'cf_tag:desc']
Data(from Rdd):
e.g. data =[('row1',[1,3400,'hello']), ('row2',[34,5000,'here in mine'])],
cols = ['cf_info:id', 'cf_info:size', 'cf_tag:desc']
"""
hconf = {"hbase.zookeeper.quorum": self.host,
"hbase.mapreduce.inputtable": table_name,
"hbase.mapred.outputtable": table_name,
"mapreduce.outputformat.class": hparams["outputFormatClass"],
"mapreduce.job.output.key.class": hparams["writeKeyClass"],
"mapreduce.job.output.value.class": hparams["writeValueClass"],
}
cols = [col.split(':') for col in columns]
if not fromrdd:
rdd_data = self.sc.parallelize(data)
rdd_data.flatMap(lambda x: format_out(x, cols)).saveAsNewAPIHadoopDataset(
conf=hconf,
keyConverter=hparams["writeKeyConverter"],
valueConverter=hparams["writeValueConverter"])
def train_svm(self, rdd_labeled):
svm = SVMWithSGD.train(rdd_labeled)
self.model = svm
return svm
def train_svm(self, X, Y):
# data = []
# for feat, tag in zip(X, Y):
# data.append(LabeledPoint(tag, feat))
# svm = SVMWithSGD.train(self.sc.parallelize(data))
hdd_data = self.sc.parallelize(zip(X, Y), 20).map(lambda x: LabeledPoint(x[1], x[0]))
svm = SVMWithSGD.train(hdd_data)
self.model = svm
# with open('res/svm_spark.model', 'wb') as modelfile:
# model = pickle.dump(svm, modelfile)
return svm
def predict_svm(self, x, model=None):
if model is None:
if self.model != None:
model = self.model
else:
# with open('res/svm_spark.model', 'rb') as modelfile:
# model = pickle.load(modelfile)
raise Exception("No model available!")
return model.predict(x)
def test_svm(self, X, Y, model=None):
pass