MPB.py.bak
8.11 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
__author__ = 'chunk'
"""
Yun Q. Shi, et al - A Markov Process Based Approach to Effective Attacking JPEG Steganography
"""
import time
import math
import numpy as np
from .. import *
from ...mjpeg import Jpeg,colorMap
from ...common import *
import csv
import json
import pickle
import cv2
from sklearn import svm
base_dir = '/home/hadoop/data/HeadShoulder/'
class MPB(StegBase):
"""
Markov Process Based Steganalyasis Algo.
"""
def __init__(self):
StegBase.__init__(self, sample_key)
self.model = None
self.svm = None
def _get_trans_prob_mat_orig(self, ciq, T=4):
"""
Original!
Calculate Transition Probability Matrix.
:param ciq: jpeg DCT coeff matrix, 2-D numpy array of int16 (pre-abs)
:param T: signed integer, usually 1~7
:return: TPM - 3-D tensor, numpy array of size (2*T+1, 2*T+1, 4)
"""
ciq = np.absolute(ciq).clip(0, T)
TPM = np.zeros((2 * T + 1, 2 * T + 1, 4), np.float64)
# Fh = np.diff(ciq, axis=-1)
# Fv = np.diff(ciq, axis=0)
Fh = ciq[:-1, :-1] - ciq[:-1, 1:]
Fv = ciq[:-1, :-1] - ciq[1:, :-1]
Fd = ciq[:-1, :-1] - ciq[1:, 1:]
Fm = ciq[:-1, 1:] - ciq[1:, :-1]
Fh1 = Fh[:-1, :-1]
Fh2 = Fh[:-1, 1:]
Fv1 = Fv[:-1, :-1]
Fv2 = Fv[1:, :-1]
Fd1 = Fd[:-1, :-1]
Fd2 = Fd[1:, 1:]
Fm1 = Fm[:-1, 1:]
Fm2 = Fm[1:, :-1]
# original:(very slow!)
for n in range(-T, T + 1):
for m in range(-T, T + 1):
dh = np.sum(Fh1 == m) * 1.0
dv = np.sum(Fv1 == m) * 1.0
dd = np.sum(Fd1 == m) * 1.0
dm = np.sum(Fm1 == m) * 1.0
if dh != 0:
TPM[m, n, 0] = np.sum(np.logical_and(Fh1 == m, Fh2 == n)) / dh
if dv != 0:
TPM[m, n, 1] = np.sum(np.logical_and(Fv1 == m, Fv2 == n)) / dv
if dd != 0:
TPM[m, n, 2] = np.sum(np.logical_and(Fd1 == m, Fd2 == n)) / dd
if dm != 0:
TPM[m, n, 3] = np.sum(np.logical_and(Fm1 == m, Fm2 == n)) / dm
# 1.422729s
return TPM
def get_trans_prob_mat(self, ciq, T=4):
"""
Calculate Transition Probability Matrix.
:param ciq: jpeg DCT coeff matrix, 2-D numpy array of int16 (pre-abs)
:param T: signed integer, usually 1~7
:return: TPM - 3-D tensor, numpy array of size (2*T+1, 2*T+1, 4)
"""
return self._get_trans_prob_mat_orig(ciq, T)
# timer = Timer()
ciq = np.absolute(ciq).clip(0, T)
TPM = np.zeros((2 * T + 1, 2 * T + 1, 4), np.float64)
# Fh = np.diff(ciq, axis=-1)
# Fv = np.diff(ciq, axis=0)
Fh = ciq[:-1, :-1] - ciq[:-1, 1:]
Fv = ciq[:-1, :-1] - ciq[1:, :-1]
Fd = ciq[:-1, :-1] - ciq[1:, 1:]
Fm = ciq[:-1, 1:] - ciq[1:, :-1]
Fh1 = Fh[:-1, :-1].ravel()
Fh2 = Fh[:-1, 1:].ravel()
Fv1 = Fv[:-1, :-1].ravel()
Fv2 = Fv[1:, :-1].ravel()
Fd1 = Fd[:-1, :-1].ravel()
Fd2 = Fd[1:, 1:].ravel()
Fm1 = Fm[:-1, 1:].ravel()
Fm2 = Fm[1:, :-1].ravel()
# 0.089754s
# timer.mark()
# TPM[Fh1.ravel(), Fh2.ravel(), 0] += 1
# TPM[Fv1.ravel(), Fv2.ravel(), 1] += 1
# TPM[Fd1.ravel(), Fd2.ravel(), 2] += 1
# TPM[Fm1.ravel(), Fm2.ravel(), 3] += 1
# timer.report()
# 1.459668s
# timer.mark()
# for i in range(len(Fh1)):
# TPM[Fh1[i], Fh2[i], 0] += 1
# for i in range(len(Fv1)):
# TPM[Fv1[i], Fv2[i], 1] += 1
# for i in range(len(Fd1)):
# TPM[Fd1[i], Fd2[i], 2] += 1
# for i in range(len(Fm1)):
# TPM[Fm1[i], Fm2[i], 3] += 1
# timer.report()
# 1.463982s
# timer.mark()
for m, n in zip(Fh1.ravel(), Fh2.ravel()):
TPM[m, n, 0] += 1
for m, n in zip(Fv1.ravel(), Fv2.ravel()):
TPM[m, n, 1] += 1
for m, n in zip(Fd1.ravel(), Fd2.ravel()):
TPM[m, n, 2] += 1
for m, n in zip(Fm1.ravel(), Fm2.ravel()):
TPM[m, n, 3] += 1
# timer.report()
# 0.057505s
# timer.mark()
for m in range(-T, T + 1):
dh = np.sum(Fh1 == m) * 1.0
dv = np.sum(Fv1 == m) * 1.0
dd = np.sum(Fd1 == m) * 1.0
dm = np.sum(Fm1 == m) * 1.0
if dh != 0:
TPM[m, :, 0] /= dh
if dv != 0:
TPM[m, :, 1] /= dv
if dd != 0:
TPM[m, :, 2] /= dd
if dm != 0:
TPM[m, :, 3] /= dm
# timer.report()
return TPM
def load_dataset(self, mode, file):
if mode == 'local':
return self._load_dataset_from_local(file)
elif mode == 'remote' or mode == 'hbase':
return self._load_dataset_from_hbase(file)
else:
raise Exception("Unknown mode!")
def _load_dataset_from_local(self, list_file='images_map_Train.tsv'):
"""
load jpeg dataset according to a file of file-list.
:param list_file: a tsv file with each line for a jpeg file path
:return:(X,Y) for SVM
"""
list_file = base_dir + list_file
X = []
Y = []
dict_tagbuf = {}
dict_dataset = {}
with open(list_file, 'rb') as tsvfile:
tsvfile = csv.reader(tsvfile, delimiter='\t')
for line in tsvfile:
imgname = line[0] + '.jpg'
dict_tagbuf[imgname] = line[1]
dir = base_dir + 'Feat/'
for path, subdirs, files in os.walk(dir + 'Train/'):
for name in files:
featpath = os.path.join(path, name)
# print featpath
with open(featpath, 'rb') as featfile:
imgname = path.split('/')[-1] + name.replace('.mpb', '.jpg')
dict_dataset[imgname] = json.loads(featfile.read())
for imgname, tag in dict_tagbuf.items():
tag = 1 if tag == 'True' else 0
X.append(dict_dataset[imgname])
Y.append(tag)
return X, Y
def _load_dataset_from_hbase(self, table='ImgCV'):
pass
def _model_svm_train_sk(self, X, Y):
timer = Timer()
timer.mark()
lin_clf = svm.LinearSVC()
lin_clf.fit(X, Y)
with open('res/tmp.model', 'wb') as modelfile:
model = pickle.dump(lin_clf, modelfile)
timer.report()
self.svm = 'sk'
self.model = lin_clf
return lin_clf
def _model_svm_predict_sk(self, image, clf=None):
if clf is None:
if self.svm == 'sk' and self.model != None:
clf = self.model
else:
with open('res/tmp.model', 'rb') as modelfile:
clf = pickle.load(modelfile)
im = mjpeg.Jpeg(image, key=sample_key)
ciq = im.coef_arrays[mjpeg.colorMap['Y']]
tpm = self.get_trans_prob_mat(ciq)
return clf.predict(tpm)
def _model_svm_train_cv(self, X, Y):
svm_params = dict(kernel_type=cv2.SVM_LINEAR,
svm_type=cv2.SVM_C_SVC,
C=2.67, gamma=5.383)
timer = Timer()
timer.mark()
svm = cv2.SVM()
svm.train(X, Y, params=svm_params)
svm.save('res/svm_data.model')
self.svm = 'cv'
self.model = svm
return svm
def _model_svm_predict_cv(self, image, svm=None):
if svm is None:
if self.svm == 'cv' and self.model != None:
clf = self.model
else:
svm = cv2.SVM()
svm.load('res/svm_data.model')
im = mjpeg.Jpeg(image, key=sample_key)
ciq = im.coef_arrays[mjpeg.colorMap['Y']]
tpm = self.get_trans_prob_mat(ciq)
return svm.predict(tpm)
def train_svm(self):
X, Y = self.load_dataset('local', 'images_map_Train.tsv')
return self._model_svm_train_sk(X, Y)
def predict_svm(self, image):
return self._model_svm_predict_sk(image)