26e2fe9f
Chunk
MPB steganalysis ...
|
1
2
3
4
5
6
7
8
|
__author__ = 'chunk'
"""
Yun Q. Shi, et al - A Markov Process Based Approach to Effective Attacking JPEG Steganography
"""
import time
import math
import numpy as np
|
04cd1acf
Chunk
before 开题答辩~~~
|
9
|
|
09268ae3
Chunk
An Algorithm-Bug ...
|
10
11
12
13
14
|
# from .. import *
import mjpeg
from msteg import *
from mjpeg import Jpeg, colorMap
from common import *
|
26e2fe9f
Chunk
MPB steganalysis ...
|
15
16
17
18
|
import csv
import json
import pickle
|
6d219855
Chunk
MPB finished. The...
|
19
|
import cv2
|
26e2fe9f
Chunk
MPB steganalysis ...
|
20
21
|
from sklearn import svm
|
f4b5291c
Chunk
Qaulity Calculati...
|
22
23
24
25
|
# from numba import jit
|
26e2fe9f
Chunk
MPB steganalysis ...
|
26
27
|
base_dir = '/home/hadoop/data/HeadShoulder/'
|
6d219855
Chunk
MPB finished. The...
|
28
|
|
26e2fe9f
Chunk
MPB steganalysis ...
|
29
30
31
32
33
34
35
|
class MPB(StegBase):
"""
Markov Process Based Steganalyasis Algo.
"""
def __init__(self):
StegBase.__init__(self, sample_key)
|
6d219855
Chunk
MPB finished. The...
|
36
37
|
self.model = None
self.svm = None
|
26e2fe9f
Chunk
MPB steganalysis ...
|
38
|
|
6d219855
Chunk
MPB finished. The...
|
39
|
def _get_trans_prob_mat_orig(self, ciq, T=4):
|
26e2fe9f
Chunk
MPB steganalysis ...
|
40
41
42
43
44
45
46
47
|
"""
Original!
Calculate Transition Probability Matrix.
:param ciq: jpeg DCT coeff matrix, 2-D numpy array of int16 (pre-abs)
:param T: signed integer, usually 1~7
:return: TPM - 3-D tensor, numpy array of size (2*T+1, 2*T+1, 4)
"""
|
09268ae3
Chunk
An Algorithm-Bug ...
|
48
|
ciq = np.absolute(ciq)
|
26e2fe9f
Chunk
MPB steganalysis ...
|
49
50
51
|
TPM = np.zeros((2 * T + 1, 2 * T + 1, 4), np.float64)
# Fh = np.diff(ciq, axis=-1)
# Fv = np.diff(ciq, axis=0)
|
09268ae3
Chunk
An Algorithm-Bug ...
|
52
53
54
55
|
Fh = (ciq[:-1, :-1] - ciq[:-1, 1:]).clip(-T, T)
Fv = (ciq[:-1, :-1] - ciq[1:, :-1]).clip(-T, T)
Fd = (ciq[:-1, :-1] - ciq[1:, 1:]).clip(-T, T)
Fm = (ciq[:-1, 1:] - ciq[1:, :-1]).clip(-T, T)
|
26e2fe9f
Chunk
MPB steganalysis ...
|
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
|
Fh1 = Fh[:-1, :-1]
Fh2 = Fh[:-1, 1:]
Fv1 = Fv[:-1, :-1]
Fv2 = Fv[1:, :-1]
Fd1 = Fd[:-1, :-1]
Fd2 = Fd[1:, 1:]
Fm1 = Fm[:-1, 1:]
Fm2 = Fm[1:, :-1]
# original:(very slow!)
for n in range(-T, T + 1):
for m in range(-T, T + 1):
dh = np.sum(Fh1 == m) * 1.0
dv = np.sum(Fv1 == m) * 1.0
dd = np.sum(Fd1 == m) * 1.0
dm = np.sum(Fm1 == m) * 1.0
if dh != 0:
TPM[m, n, 0] = np.sum(np.logical_and(Fh1 == m, Fh2 == n)) / dh
if dv != 0:
TPM[m, n, 1] = np.sum(np.logical_and(Fv1 == m, Fv2 == n)) / dv
if dd != 0:
TPM[m, n, 2] = np.sum(np.logical_and(Fd1 == m, Fd2 == n)) / dd
if dm != 0:
TPM[m, n, 3] = np.sum(np.logical_and(Fm1 == m, Fm2 == n)) / dm
# 1.422729s
return TPM
|
4a20967b
Chunk
staged.
|
92
|
# @jit
|
26e2fe9f
Chunk
MPB steganalysis ...
|
93
94
95
96
97
98
99
100
|
def get_trans_prob_mat(self, ciq, T=4):
"""
Calculate Transition Probability Matrix.
:param ciq: jpeg DCT coeff matrix, 2-D numpy array of int16 (pre-abs)
:param T: signed integer, usually 1~7
:return: TPM - 3-D tensor, numpy array of size (2*T+1, 2*T+1, 4)
"""
|
6d219855
Chunk
MPB finished. The...
|
101
|
|
04cd1acf
Chunk
before 开题答辩~~~
|
102
|
return self._get_trans_prob_mat_orig(ciq, T)
|
6d219855
Chunk
MPB finished. The...
|
103
104
|
|
26e2fe9f
Chunk
MPB steganalysis ...
|
105
|
# timer = Timer()
|
09268ae3
Chunk
An Algorithm-Bug ...
|
106
107
|
# ciq = np.absolute(ciq).clip(0, T) # Fool !!!
ciq = np.absolute(ciq)
|
26e2fe9f
Chunk
MPB steganalysis ...
|
108
109
110
|
TPM = np.zeros((2 * T + 1, 2 * T + 1, 4), np.float64)
# Fh = np.diff(ciq, axis=-1)
# Fv = np.diff(ciq, axis=0)
|
09268ae3
Chunk
An Algorithm-Bug ...
|
111
112
113
114
115
116
117
118
119
120
|
# Fh = ciq[:-1, :-1] - ciq[:-1, 1:]
# Fv = ciq[:-1, :-1] - ciq[1:, :-1]
# Fd = ciq[:-1, :-1] - ciq[1:, 1:]
# Fm = ciq[:-1, 1:] - ciq[1:, :-1]
Fh = (ciq[:-1, :-1] - ciq[:-1, 1:]).clip(-T, T)
Fv = (ciq[:-1, :-1] - ciq[1:, :-1]).clip(-T, T)
Fd = (ciq[:-1, :-1] - ciq[1:, 1:]).clip(-T, T)
Fm = (ciq[:-1, 1:] - ciq[1:, :-1]).clip(-T, T)
|
26e2fe9f
Chunk
MPB steganalysis ...
|
121
|
|
04cd1acf
Chunk
before 开题答辩~~~
|
122
123
|
Fh1 = Fh[:-1, :-1].ravel()
Fh2 = Fh[:-1, 1:].ravel()
|
26e2fe9f
Chunk
MPB steganalysis ...
|
124
|
|
04cd1acf
Chunk
before 开题答辩~~~
|
125
126
|
Fv1 = Fv[:-1, :-1].ravel()
Fv2 = Fv[1:, :-1].ravel()
|
26e2fe9f
Chunk
MPB steganalysis ...
|
127
|
|
04cd1acf
Chunk
before 开题答辩~~~
|
128
129
|
Fd1 = Fd[:-1, :-1].ravel()
Fd2 = Fd[1:, 1:].ravel()
|
26e2fe9f
Chunk
MPB steganalysis ...
|
130
|
|
04cd1acf
Chunk
before 开题答辩~~~
|
131
132
|
Fm1 = Fm[:-1, 1:].ravel()
Fm2 = Fm[1:, :-1].ravel()
|
26e2fe9f
Chunk
MPB steganalysis ...
|
133
134
135
136
137
138
139
140
141
142
143
|
# 0.089754s
# timer.mark()
# TPM[Fh1.ravel(), Fh2.ravel(), 0] += 1
# TPM[Fv1.ravel(), Fv2.ravel(), 1] += 1
# TPM[Fd1.ravel(), Fd2.ravel(), 2] += 1
# TPM[Fm1.ravel(), Fm2.ravel(), 3] += 1
# timer.report()
|
04cd1acf
Chunk
before 开题答辩~~~
|
144
145
146
|
# 1.459668s
# timer.mark()
# for i in range(len(Fh1)):
|
09268ae3
Chunk
An Algorithm-Bug ...
|
147
|
# TPM[Fh1[i], Fh2[i], 0] += 1
|
04cd1acf
Chunk
before 开题答辩~~~
|
148
149
150
151
152
153
154
155
156
|
# for i in range(len(Fv1)):
# TPM[Fv1[i], Fv2[i], 1] += 1
# for i in range(len(Fd1)):
# TPM[Fd1[i], Fd2[i], 2] += 1
# for i in range(len(Fm1)):
# TPM[Fm1[i], Fm2[i], 3] += 1
# timer.report()
# 1.463982s
|
26e2fe9f
Chunk
MPB steganalysis ...
|
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
|
# timer.mark()
for m, n in zip(Fh1.ravel(), Fh2.ravel()):
TPM[m, n, 0] += 1
for m, n in zip(Fv1.ravel(), Fv2.ravel()):
TPM[m, n, 1] += 1
for m, n in zip(Fd1.ravel(), Fd2.ravel()):
TPM[m, n, 2] += 1
for m, n in zip(Fm1.ravel(), Fm2.ravel()):
TPM[m, n, 3] += 1
# timer.report()
# 0.057505s
# timer.mark()
for m in range(-T, T + 1):
dh = np.sum(Fh1 == m) * 1.0
dv = np.sum(Fv1 == m) * 1.0
dd = np.sum(Fd1 == m) * 1.0
dm = np.sum(Fm1 == m) * 1.0
if dh != 0:
TPM[m, :, 0] /= dh
if dv != 0:
TPM[m, :, 1] /= dv
if dd != 0:
TPM[m, :, 2] /= dd
if dm != 0:
TPM[m, :, 3] /= dm
# timer.report()
return TPM
|
6d219855
Chunk
MPB finished. The...
|
194
195
196
197
198
199
200
201
202
|
def load_dataset(self, mode, file):
if mode == 'local':
return self._load_dataset_from_local(file)
elif mode == 'remote' or mode == 'hbase':
return self._load_dataset_from_hbase(file)
else:
raise Exception("Unknown mode!")
def _load_dataset_from_local(self, list_file='images_map_Train.tsv'):
|
26e2fe9f
Chunk
MPB steganalysis ...
|
203
204
205
206
207
208
|
"""
load jpeg dataset according to a file of file-list.
:param list_file: a tsv file with each line for a jpeg file path
:return:(X,Y) for SVM
"""
|
6d219855
Chunk
MPB finished. The...
|
209
210
|
list_file = base_dir + list_file
|
26e2fe9f
Chunk
MPB steganalysis ...
|
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
|
X = []
Y = []
dict_tagbuf = {}
dict_dataset = {}
with open(list_file, 'rb') as tsvfile:
tsvfile = csv.reader(tsvfile, delimiter='\t')
for line in tsvfile:
imgname = line[0] + '.jpg'
dict_tagbuf[imgname] = line[1]
dir = base_dir + 'Feat/'
for path, subdirs, files in os.walk(dir + 'Train/'):
for name in files:
featpath = os.path.join(path, name)
# print featpath
with open(featpath, 'rb') as featfile:
imgname = path.split('/')[-1] + name.replace('.mpb', '.jpg')
dict_dataset[imgname] = json.loads(featfile.read())
for imgname, tag in dict_tagbuf.items():
tag = 1 if tag == 'True' else 0
X.append(dict_dataset[imgname])
Y.append(tag)
return X, Y
|
6d219855
Chunk
MPB finished. The...
|
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
|
def _load_dataset_from_hbase(self, table='ImgCV'):
pass
def _model_svm_train_sk(self, X, Y):
timer = Timer()
timer.mark()
lin_clf = svm.LinearSVC()
lin_clf.fit(X, Y)
with open('res/tmp.model', 'wb') as modelfile:
model = pickle.dump(lin_clf, modelfile)
timer.report()
self.svm = 'sk'
self.model = lin_clf
return lin_clf
def _model_svm_predict_sk(self, image, clf=None):
if clf is None:
if self.svm == 'sk' and self.model != None:
clf = self.model
else:
with open('res/tmp.model', 'rb') as modelfile:
clf = pickle.load(modelfile)
|
c6c61f81
Chunk
staged.
|
266
267
|
im = mjpeg.Jpeg(image, key=sample_key)
ciq = im.coef_arrays[mjpeg.colorMap['Y']]
|
6d219855
Chunk
MPB finished. The...
|
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
|
tpm = self.get_trans_prob_mat(ciq)
return clf.predict(tpm)
def _model_svm_train_cv(self, X, Y):
svm_params = dict(kernel_type=cv2.SVM_LINEAR,
svm_type=cv2.SVM_C_SVC,
C=2.67, gamma=5.383)
timer = Timer()
timer.mark()
svm = cv2.SVM()
svm.train(X, Y, params=svm_params)
svm.save('res/svm_data.model')
|
26e2fe9f
Chunk
MPB steganalysis ...
|
283
|
|
6d219855
Chunk
MPB finished. The...
|
284
285
|
self.svm = 'cv'
self.model = svm
|
26e2fe9f
Chunk
MPB steganalysis ...
|
286
|
|
6d219855
Chunk
MPB finished. The...
|
287
|
return svm
|
26e2fe9f
Chunk
MPB steganalysis ...
|
288
|
|
6d219855
Chunk
MPB finished. The...
|
289
290
291
292
293
294
295
|
def _model_svm_predict_cv(self, image, svm=None):
if svm is None:
if self.svm == 'cv' and self.model != None:
clf = self.model
else:
svm = cv2.SVM()
svm.load('res/svm_data.model')
|
26e2fe9f
Chunk
MPB steganalysis ...
|
296
|
|
c6c61f81
Chunk
staged.
|
297
298
|
im = mjpeg.Jpeg(image, key=sample_key)
ciq = im.coef_arrays[mjpeg.colorMap['Y']]
|
6d219855
Chunk
MPB finished. The...
|
299
|
tpm = self.get_trans_prob_mat(ciq)
|
26e2fe9f
Chunk
MPB steganalysis ...
|
300
|
|
6d219855
Chunk
MPB finished. The...
|
301
|
return svm.predict(tpm)
|
26e2fe9f
Chunk
MPB steganalysis ...
|
302
|
|
6d219855
Chunk
MPB finished. The...
|
303
304
305
|
def train_svm(self):
X, Y = self.load_dataset('local', 'images_map_Train.tsv')
return self._model_svm_train_sk(X, Y)
|
26e2fe9f
Chunk
MPB steganalysis ...
|
306
|
|
b69b6985
Chunk
py module refract...
|
307
|
def predict_svm(self, image):
|
6d219855
Chunk
MPB finished. The...
|
308
|
return self._model_svm_predict_sk(image)
|
26e2fe9f
Chunk
MPB steganalysis ...
|
|
|