Blame view

mjpeg/__init__.py 12.8 KB
2b474806   Chunk   init.
1
2
## -*- coding: utf-8 -*-

c6c61f81   Chunk   staged.
3
from libmjsteg import Jsteg
2b474806   Chunk   init.
4

f4b5291c   Chunk   Qaulity Calculati...
5
__all__ = ['Jpeg','colorMap','diffblock','diffblocks']
2b474806   Chunk   init.
6
7
8
9
10
11
12
13
14

# We need standard components from :mod:`numpy`, and some auxiliary
# functions from submodules.
#
# ::

import numpy.random as rnd
from numpy import shape
import numpy as np
548d95dc   Chunk   steganography(F3 ...
15
import pylab as plt
2b474806   Chunk   init.
16
17
18

import base
from dct import bdct, ibdct
f4b5291c   Chunk   Qaulity Calculati...
19

2b474806   Chunk   init.
20
21
22
23
24
25
26
27
28
29
30
31
# The colour codes are defined in the JPEG standard.  We store
# them here for easy reference by name::

colorCode = {
    "GRAYSCALE": 1,
    "RGB": 2,
    "YCbCr": 3,
    "CMYK": 4,
    "YCCK": 5
}

colorParam = ['Y', 'Cb', 'Cr']
6cbb3879   Chunk   F4 updated.
32
colorMap = {'Y': 0, 'Cb': 1, 'Cr': 2}
26e2fe9f   Chunk   MPB steganalysis ...
33

6cbb3879   Chunk   F4 updated.
34
# The JPEG class
2b474806   Chunk   init.
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
# ==============

class Jpeg(Jsteg):
    """
      The jpeg (derived from jpegObject) allows the user to extract
      a sequence of pseudo-randomly ordered jpeg coefficients for
      watermarking/steganography, and reinsert them.
    """

    def __init__(self, file=None, key=None, rndkey=True, image=None,
                 verbosity=1, **kw):
        """
          The constructor will return a new Object with data from the given file.

          The key is used to determine the order of the jpeg coefficients.
          If no key is given, a random key is extracted using
          random.SystemRandom().
        """
        if image != None:
            raise NotImplementedError, "Compression is not yet implemented"
        Jsteg.__init__(self, file, **kw)
        self.verbosity = verbosity
        if verbosity > 0:
            print "[Jpeg.__init__] Image size %ix%i" % (self.coef_arrays[0].shape)
873557f9   Chunk   staged.
59
        if key != None:
2b474806   Chunk   init.
60
61
62
63
64
65
66
            self.key = key
        elif rndkey:
            self.key = [base.sysrnd.getrandbits(16) for x in range(16)]
        else:
            self.key = None


26e2fe9f   Chunk   MPB steganalysis ...
67
    def getkey(self):
2b474806   Chunk   init.
68
69
70
71
72
73
74
        """Return the key used to shuffle the coefficients."""
        return self.key

    # 1D Signal Representations
    # -------------------------

    def rawsignal(self, mask=base.acMaskBlock, channel="All"):
6cbb3879   Chunk   F4 updated.
75
        """
2b474806   Chunk   init.
76
77
78
79
80
          Return a 1D array of AC coefficients.
          (Most applications should use getsignal() rather than rawsignal().)
        """
        R = []
        if channel == "All":
6cbb3879   Chunk   F4 updated.
81
82
83
84
85
86
87
88
            for X in self.coef_arrays:
                (h, w) = X.shape
                A = base.acMask(h, w, mask)
                R = np.hstack([R, X[A]])
        else:
            cID = self.getCompID(channel)
            X = self.coef_arrays[cID]
            (h, w) = X.shape
2b474806   Chunk   init.
89
90
91
92
93
            A = base.acMask(h, w, mask)
            R = np.hstack([R, X[A]])
        return R

    def getsignal(self, mask=base.acMaskBlock, channel="All"):
6cbb3879   Chunk   F4 updated.
94
        """Return a 1D array of AC coefficients in random order."""
2b474806   Chunk   init.
95
        R = self.rawsignal(mask, channel)
6cbb3879   Chunk   F4 updated.
96
        if self.key == None:
2b474806   Chunk   init.
97
98
99
100
101
102
            return R
        else:
            rnd.seed(self.key)
            return R[rnd.permutation(len(R))]

    def setsignal(self, R0, mask=base.acMaskBlock, channel="All"):
6cbb3879   Chunk   F4 updated.
103
        """Reinserts AC coefficients from getitem in the correct positions."""
2b474806   Chunk   init.
104
105
106
107
108
109
110
111
112
        if self.key != None:
            rnd.seed(self.key)
            fst = 0
            P = rnd.permutation(len(R0))
            R = np.array(R0)
            R[P] = R0
        else:
            R = R0
        if channel == "All":
6cbb3879   Chunk   F4 updated.
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
            for cID in range(3):
                X = self.coef_arrays[cID]
                s = X.size * 63 / 64
                (h, w) = X.shape
                X[base.acMask(h, w, mask)] = R[fst:(fst + s)]
                fst += s

                # Jset
                blocks = self.getCoefBlocks(channel=colorParam[cID])
                xmax, ymax = self.Jgetcompdim(cID)
                for y in range(ymax):
                    for x in range(xmax):
                        block = blocks[y, x]
                        self.Jsetblock(x, y, cID, bytearray(block.astype(np.int16)))

        else:
            cID = self.getCompID(channel)
            X = self.coef_arrays[cID]
            s = X.size * 63 / 64
2b474806   Chunk   init.
132
133
134
135
            (h, w) = X.shape
            X[base.acMask(h, w, mask)] = R[fst:(fst + s)]
            fst += s

6cbb3879   Chunk   F4 updated.
136
137
138
139
140
141
142
143
144
            # Jset
            blocks = self.getCoefBlocks(channel)
            xmax, ymax = self.Jgetcompdim(cID)
            for y in range(ymax):
                for x in range(xmax):
                    block = blocks[y, x]
                    self.Jsetblock(x, y, cID, bytearray(block.astype(np.int16)))

        assert len(R) == fst
2b474806   Chunk   init.
145

6cbb3879   Chunk   F4 updated.
146

2b474806   Chunk   init.
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
    # Histogram and Image Statistics
    # ------------------------------

    def abshist(self, mask=base.acMaskBlock, T=8):
        """
          Make a histogram of absolute values for a signal.
        """
        A = abs(self.rawsignal(mask)).tolist()
        L = len(A)
        D = {}
        C = 0
        for i in range(T + 1):
            D[i] = A.count(i)
            C += D[i]
        D["high"] = L - C
        D["total"] = L
        return D

    def hist(self, mask=base.acMaskBlock, T=8):
        """
          Make a histogram of the jpeg coefficients.
          The mask is a boolean 8x8 matrix indicating the
          frequencies to be included.  This defaults to the
          AC coefficients.
        """
        A = self.rawsignal(mask).tolist()
        E = [-np.inf] + [i for i in range(-T, T + 2)] + [np.inf]
        return np.histogram(A, E)

    def plotHist(self, mask=base.acMaskBlock, T=8):
548d95dc   Chunk   steganography(F3 ...
177
178
179
180
181
182
183
184
185
186
187
188
        """
          Make a histogram of the jpeg coefficients.
          The mask is a boolean 8x8 matrix indicating the
          frequencies to be included.  This defaults to the
          AC coefficients.
        """
        A = self.rawsignal(mask).tolist()
        E = [i for i in range(-T, T + 2)]
        plt.hist(A, E, histtype='bar')
        plt.show()

    def nzcount(self, *a, **kw):
2b474806   Chunk   init.
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
        """Number of non-zero AC coefficients.

          Arguments are passed to rawsignal(), so a non-default mask could
          be specified to get other coefficients than the 63 AC coefficients.
        """
        R = list(self.rawsignal(*a, **kw))
        return len(R) - R.count(0)

    # Access to JPEG Image Data
    # -------------------------

    def getCompID(self, channel):
        """
          Get the index of the given colour channel.
        """
        # How do we adress different channels?
        colourSpace = self.jpeg_color_space;
        if colourSpace == colorCode["GRAYSCALE"]:
            if channel == "Y":
                return 0
            elif channel == None:
                return 0
            else:
                raise Exception, "Invalid colour space designator"
        elif colourSpace == colorCode["YCbCr"]:
            if channel == "Y":
                return 0
            elif channel == "Cb":
                return 1
            elif channel == "Cr":
                return 2
            else:
                raise Exception, "Invalid colour space designator"
        raise NotImplementedError, "Only YCbCr and Grayscale are supported."

    def getQMatrix(self, channel):
        """
          Return the quantisation matrix for the given colour channel.
        """
        cID = self.getCompID(channel)
        return self.quant_tables[self.comp_info[cID]["quant_tbl_no"]]

    def getCoefMatrix(self, channel="Y"):
        """
          This method returns the coefficient matrix for the given
          colour channel (as a matrix).
        """
        cID = self.getCompID(channel)
        return self.coef_arrays[cID]

    def setCoefMatrix(self, matrix, channel="Y"):
fad8d727   Chunk   so you want to se...
240
241
242
243
244
245
246
        v, h = self.getCoefMatrix(channel).shape
        assert matrix.shape == (v, h), "matrix is expected of size (%d,%d)" % (v, h)

        cID = self.getCompID(channel)
        self.coef_arrays[cID] = matrix

        blocks = self.getCoefBlocks(channel)
8c310e83   Chunk   jpeg base resolved.
247
248
249
250
251
252
        xmax, ymax = self.Jgetcompdim(cID)
        for y in range(ymax):
            for x in range(xmax):
                block = blocks[y, x]
                self.Jsetblock(x, y, cID, bytearray(block.astype(np.int16)))

fad8d727   Chunk   so you want to se...
253
    def getCoefBlocks(self, channel="Y"):
2b474806   Chunk   init.
254
255
256
257
258
        """
          This method returns the coefficient matrix for the given
          colour channel (as a 4-D tensor: (v,h,row,col)).
        """
        if channel == "All":
fad8d727   Chunk   so you want to se...
259
            return [
dceec280   Chunk   get capacity.
260
261
262
                np.array([np.hsplit(arr, arr.shape[1] / 8) for arr in np.vsplit(compMat, compMat.shape[0] / 8)])
                for compMat in self.coef_arrays]

fad8d727   Chunk   so you want to se...
263
        compMat = self.getCoefMatrix(channel="Y")
dceec280   Chunk   get capacity.
264
        return np.array([np.hsplit(arr, arr.shape[1] / 8) for arr in np.vsplit(compMat, compMat.shape[0] / 8)])
548d95dc   Chunk   steganography(F3 ...
265

fad8d727   Chunk   so you want to se...
266
267
268
269
270
271
272
273
274
275
276
277
278
279
    def getCoefBlock(self, channel="Y", loc=(0, 0)):
        """
          This method returns the coefficient matrix for the given
          colour channel (as a 4-D tensor: (v,h,row,col)).
        """
        return self.getCoefBlocks(channel)[loc]


    def setCoefBlock(self, block, channel="Y", loc=(0, 0)):
        assert block.shape == (8, 8), "block is expected of size (8,8)"
        cID = self.getCompID(channel)
        v, h = loc[0] * 8, loc[1] * 8
        self.coef_arrays[cID][v:v + 8, h:h + 8] = block

2b474806   Chunk   init.
280
        self.Jsetblock(loc[1], loc[0], cID, bytearray(block.astype(np.int16)))
8c310e83   Chunk   jpeg base resolved.
281
282

    def setCoefBlocks(self, blocks, channel="Y"):
548d95dc   Chunk   steganography(F3 ...
283
284
285
286
        assert blocks.shape[-2:] == (8, 8), "block is expected of size (8,8)"
        cID = self.getCompID(channel)

        vmax, hmax = blocks.shape[:2]
6cbb3879   Chunk   F4 updated.
287
        for i in range(vmax):
548d95dc   Chunk   steganography(F3 ...
288
289
290
            for j in range(hmax):
                v, h = i * 8, j * 8
                self.coef_arrays[cID][v:v + 8, h:h + 8] = blocks[i, j]
6cbb3879   Chunk   F4 updated.
291
292
                self.Jsetblock(j, i, cID, bytearray(blocks[i, j].astype(np.int16)))

548d95dc   Chunk   steganography(F3 ...
293
    # Decompression
f4b5291c   Chunk   Qaulity Calculati...
294
295
296
    # -------------

    def getSpatial(self, channel="Y"):
dceec280   Chunk   get capacity.
297
298
299
300
301
302
303
304
        """
          This method returns one decompressed colour channel as a matrix.
          The appropriate JPEG coefficient matrix is dequantised
          (using the quantisation tables held by the object) and
          inverse DCT transformed.
        """
        X = self.getCoefMatrix(channel)
        Q = self.getQMatrix(channel)
f4b5291c   Chunk   Qaulity Calculati...
305
306
307
308
309
310
311
312
313
        (M, N) = shape(X)
        assert M % 8 == 0, "Image size not divisible by 8"
        assert N % 8 == 0, "Image size not divisible by 8"
        D = X * base.repmat(Q, (M / 8, N / 8))
        S = ibdct(D)
        # assert max( abs(S).flatten() ) <=128, "Image colours out of range"
        return (S + 128 ).astype(np.uint8)

    # Complete, general decompression is not yet implemented::
4a20967b   Chunk   staged.
314
315

    def getimage(self):
f4b5291c   Chunk   Qaulity Calculati...
316
317
318
319
320
        """
          Decompress the image and a PIL Image object.
        """

        # Probably better to use a numpy image/array.
873557f9   Chunk   staged.
321
322

        raise NotImplementedError, "Decompression is not yet implemented"
f4b5291c   Chunk   Qaulity Calculati...
323
324
325
326

        # We miss the routines for upsampling and adjusting the size

        L = len(self.coef_arrays)
4a20967b   Chunk   staged.
327
        im = []
f4b5291c   Chunk   Qaulity Calculati...
328
329
330
331
332
333
334
335
336
337
338
339
340
341
        for i in range(L):
            C = self.coef_arrays[i]
            if C != None:
                Q = self.quant_tables[self.comp_info[i]["quant_tbl_no"]]
                im.append(ibdct(dequantise(C, Q)))
        return Image.fromarray(im)


    # Calibration
    # -----------

    def getCalibrated(self, channel="Y", mode="all"):
        """
          Return a calibrated coefficient matrix for the given channel.
2b474806   Chunk   init.
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
          Channel may be "Y", "Cb", or "Cr" for YCbCr format.
          For Grayscale images, it may be None or "Y".
        """
        S = self.getSpatial(channel)
        (M, N) = shape(S)
        assert M % 8 == 0, "Image size not divisible by 8"
        assert N % 8 == 0, "Image size not divisible by 8"
        if mode == "col":
            S1 = S[:, 4:(N - 4)]
            cShape = ( M / 8, N / 8 - 1 )
        else:
            S1 = S[4:(M - 4), 4:(N - 4)]
            cShape = ( (M - 1) / 8, (N - 1) / 8 )
        D = bdct(S1 - 128)
        X = D / base.repmat(self.getQMatrix(channel), cShape)
        return np.round(X)

    def calibrate(self, *a, **kw):
        assert len(self.coef_arrays) == 1
        self.coef_arrays[0] = self.getCalibrated(*a, **kw)

    def getCalSpatial(self, channel="Y"):
        """
          Return the decompressed, calibrated, grayscale image.
          A different colour channel can be selected with the channel
          argument.
        """

        # We calibrate the image, obtaining a JPEG matrix.

        C = self.getCalibrated(channel)

        # The rest is straight forward JPEG decompression.

        (M, N) = shape(C)
        cShape = (M / 8, N / 8)
        D = C * base.repmat(self.getQMatrix(channel), cShape)
        S = np.round(ibdct(D) + 128)
        return S.astype(np.uint8)


def diffblock(c1, c2):
    diff = False
    if np.array_equal(c1, c2):
        print("blocks match")
    else:
        print("blocks not match")
        diff = True

    return diff


def diffblocks(a, b):
    diff = False
    cnt = 0
    for comp in range(a.image_components):
        xmax, ymax = a.Jgetcompdim(comp)
        for y in range(ymax):
            for x in range(xmax):
                if a.Jgetblock(x, y, comp) != b.Jgetblock(x, y, comp):
                    print("blocks({},{}) in component {} not match".format(y, x, comp))
                    diff = True
                    cnt += 1
    return diff, cnt
8c310e83   Chunk   jpeg base resolved.

26e2fe9f   Chunk   MPB steganalysis ...

8c310e83   Chunk   jpeg base resolved.

f4b5291c   Chunk   Qaulity Calculati...