Blame view

msteg/steganalysis/MPB.py 8.49 KB
26e2fe9f   Chunk   MPB steganalysis ...
1
2
3
4
5
6
7
8
__author__ = 'chunk'
"""
Yun Q. Shi, et al - A Markov Process Based Approach to Effective Attacking JPEG Steganography
"""

import time
import math
import numpy as np
04cd1acf   Chunk   before 开题答辩~~~
9

09268ae3   Chunk   An Algorithm-Bug ...
10
11
12
13
14
# from .. import *
import mjpeg
from msteg import *
from mjpeg import Jpeg, colorMap
from common import *
26e2fe9f   Chunk   MPB steganalysis ...
15
16
17
18

import csv
import json
import pickle
6d219855   Chunk   MPB finished. The...
19
import cv2
26e2fe9f   Chunk   MPB steganalysis ...
20
21
from sklearn import svm

f4b5291c   Chunk   Qaulity Calculati...
22
23
24
25
# from numba import jit



26e2fe9f   Chunk   MPB steganalysis ...
26
27
base_dir = '/home/hadoop/data/HeadShoulder/'

6d219855   Chunk   MPB finished. The...
28

26e2fe9f   Chunk   MPB steganalysis ...
29
30
31
32
33
34
35
class MPB(StegBase):
    """
    Markov Process Based Steganalyasis Algo.
    """

    def __init__(self):
        StegBase.__init__(self, sample_key)
6d219855   Chunk   MPB finished. The...
36
37
        self.model = None
        self.svm = None
26e2fe9f   Chunk   MPB steganalysis ...
38

6d219855   Chunk   MPB finished. The...
39
    def _get_trans_prob_mat_orig(self, ciq, T=4):
26e2fe9f   Chunk   MPB steganalysis ...
40
41
42
43
44
45
46
47
        """
        Original!
        Calculate Transition Probability Matrix.

        :param ciq: jpeg DCT coeff matrix, 2-D numpy array of int16 (pre-abs)
        :param T: signed integer, usually 1~7
        :return: TPM - 3-D tensor, numpy array of size (2*T+1, 2*T+1, 4)
        """
09268ae3   Chunk   An Algorithm-Bug ...
48
        ciq = np.absolute(ciq)
26e2fe9f   Chunk   MPB steganalysis ...
49
50
51
        TPM = np.zeros((2 * T + 1, 2 * T + 1, 4), np.float64)
        # Fh = np.diff(ciq, axis=-1)
        # Fv = np.diff(ciq, axis=0)
09268ae3   Chunk   An Algorithm-Bug ...
52
53
54
55
        Fh = (ciq[:-1, :-1] - ciq[:-1, 1:]).clip(-T, T)
        Fv = (ciq[:-1, :-1] - ciq[1:, :-1]).clip(-T, T)
        Fd = (ciq[:-1, :-1] - ciq[1:, 1:]).clip(-T, T)
        Fm = (ciq[:-1, 1:] - ciq[1:, :-1]).clip(-T, T)
26e2fe9f   Chunk   MPB steganalysis ...
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91

        Fh1 = Fh[:-1, :-1]
        Fh2 = Fh[:-1, 1:]

        Fv1 = Fv[:-1, :-1]
        Fv2 = Fv[1:, :-1]

        Fd1 = Fd[:-1, :-1]
        Fd2 = Fd[1:, 1:]

        Fm1 = Fm[:-1, 1:]
        Fm2 = Fm[1:, :-1]

        # original:(very slow!)
        for n in range(-T, T + 1):
            for m in range(-T, T + 1):
                dh = np.sum(Fh1 == m) * 1.0
                dv = np.sum(Fv1 == m) * 1.0
                dd = np.sum(Fd1 == m) * 1.0
                dm = np.sum(Fm1 == m) * 1.0

                if dh != 0:
                    TPM[m, n, 0] = np.sum(np.logical_and(Fh1 == m, Fh2 == n)) / dh

                if dv != 0:
                    TPM[m, n, 1] = np.sum(np.logical_and(Fv1 == m, Fv2 == n)) / dv

                if dd != 0:
                    TPM[m, n, 2] = np.sum(np.logical_and(Fd1 == m, Fd2 == n)) / dd

                if dm != 0:
                    TPM[m, n, 3] = np.sum(np.logical_and(Fm1 == m, Fm2 == n)) / dm

        # 1.422729s
        return TPM

4a20967b   Chunk   staged.
92
    # @jit
26e2fe9f   Chunk   MPB steganalysis ...
93
94
95
96
97
98
99
100
    def get_trans_prob_mat(self, ciq, T=4):
        """
        Calculate Transition Probability Matrix.

        :param ciq: jpeg DCT coeff matrix, 2-D numpy array of int16 (pre-abs)
        :param T: signed integer, usually 1~7
        :return: TPM - 3-D tensor, numpy array of size (2*T+1, 2*T+1, 4)
        """
6d219855   Chunk   MPB finished. The...
101

04cd1acf   Chunk   before 开题答辩~~~
102
        return self._get_trans_prob_mat_orig(ciq, T)
6d219855   Chunk   MPB finished. The...
103
104


26e2fe9f   Chunk   MPB steganalysis ...
105
        # timer = Timer()
09268ae3   Chunk   An Algorithm-Bug ...
106
107
        # ciq = np.absolute(ciq).clip(0, T) # Fool !!!
        ciq = np.absolute(ciq)
26e2fe9f   Chunk   MPB steganalysis ...
108
109
110
        TPM = np.zeros((2 * T + 1, 2 * T + 1, 4), np.float64)
        # Fh = np.diff(ciq, axis=-1)
        # Fv = np.diff(ciq, axis=0)
09268ae3   Chunk   An Algorithm-Bug ...
111
112
113
114
115
116
117
118
119
120

        # Fh = ciq[:-1, :-1] - ciq[:-1, 1:]
        # Fv = ciq[:-1, :-1] - ciq[1:, :-1]
        # Fd = ciq[:-1, :-1] - ciq[1:, 1:]
        # Fm = ciq[:-1, 1:] - ciq[1:, :-1]

        Fh = (ciq[:-1, :-1] - ciq[:-1, 1:]).clip(-T, T)
        Fv = (ciq[:-1, :-1] - ciq[1:, :-1]).clip(-T, T)
        Fd = (ciq[:-1, :-1] - ciq[1:, 1:]).clip(-T, T)
        Fm = (ciq[:-1, 1:] - ciq[1:, :-1]).clip(-T, T)
26e2fe9f   Chunk   MPB steganalysis ...
121

04cd1acf   Chunk   before 开题答辩~~~
122
123
        Fh1 = Fh[:-1, :-1].ravel()
        Fh2 = Fh[:-1, 1:].ravel()
26e2fe9f   Chunk   MPB steganalysis ...
124

04cd1acf   Chunk   before 开题答辩~~~
125
126
        Fv1 = Fv[:-1, :-1].ravel()
        Fv2 = Fv[1:, :-1].ravel()
26e2fe9f   Chunk   MPB steganalysis ...
127

04cd1acf   Chunk   before 开题答辩~~~
128
129
        Fd1 = Fd[:-1, :-1].ravel()
        Fd2 = Fd[1:, 1:].ravel()
26e2fe9f   Chunk   MPB steganalysis ...
130

04cd1acf   Chunk   before 开题答辩~~~
131
132
        Fm1 = Fm[:-1, 1:].ravel()
        Fm2 = Fm[1:, :-1].ravel()
26e2fe9f   Chunk   MPB steganalysis ...
133
134
135
136
137
138
139
140
141
142
143



        # 0.089754s
        # timer.mark()
        # TPM[Fh1.ravel(), Fh2.ravel(), 0] += 1
        # TPM[Fv1.ravel(), Fv2.ravel(), 1] += 1
        # TPM[Fd1.ravel(), Fd2.ravel(), 2] += 1
        # TPM[Fm1.ravel(), Fm2.ravel(), 3] += 1
        # timer.report()

04cd1acf   Chunk   before 开题答辩~~~
144
145
146
        # 1.459668s
        # timer.mark()
        # for i in range(len(Fh1)):
09268ae3   Chunk   An Algorithm-Bug ...
147
        # TPM[Fh1[i], Fh2[i], 0] += 1
04cd1acf   Chunk   before 开题答辩~~~
148
149
150
151
152
153
154
155
156
        # for i in range(len(Fv1)):
        #     TPM[Fv1[i], Fv2[i], 1] += 1
        # for i in range(len(Fd1)):
        #     TPM[Fd1[i], Fd2[i], 2] += 1
        # for i in range(len(Fm1)):
        #     TPM[Fm1[i], Fm2[i], 3] += 1
        # timer.report()

        # 1.463982s
26e2fe9f   Chunk   MPB steganalysis ...
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
        # timer.mark()
        for m, n in zip(Fh1.ravel(), Fh2.ravel()):
            TPM[m, n, 0] += 1

        for m, n in zip(Fv1.ravel(), Fv2.ravel()):
            TPM[m, n, 1] += 1

        for m, n in zip(Fd1.ravel(), Fd2.ravel()):
            TPM[m, n, 2] += 1

        for m, n in zip(Fm1.ravel(), Fm2.ravel()):
            TPM[m, n, 3] += 1
        # timer.report()

        # 0.057505s
        # timer.mark()
        for m in range(-T, T + 1):
            dh = np.sum(Fh1 == m) * 1.0
            dv = np.sum(Fv1 == m) * 1.0
            dd = np.sum(Fd1 == m) * 1.0
            dm = np.sum(Fm1 == m) * 1.0

            if dh != 0:
                TPM[m, :, 0] /= dh

            if dv != 0:
                TPM[m, :, 1] /= dv

            if dd != 0:
                TPM[m, :, 2] /= dd

            if dm != 0:
                TPM[m, :, 3] /= dm
        # timer.report()

        return TPM

6d219855   Chunk   MPB finished. The...
194
195
196
197
198
199
200
201
202
    def load_dataset(self, mode, file):
        if mode == 'local':
            return self._load_dataset_from_local(file)
        elif mode == 'remote' or mode == 'hbase':
            return self._load_dataset_from_hbase(file)
        else:
            raise Exception("Unknown mode!")

    def _load_dataset_from_local(self, list_file='images_map_Train.tsv'):
26e2fe9f   Chunk   MPB steganalysis ...
203
204
205
206
207
208
        """
        load jpeg dataset according to a file of file-list.

        :param list_file: a tsv file with each line for a jpeg file path
        :return:(X,Y) for SVM
        """
6d219855   Chunk   MPB finished. The...
209
210
        list_file = base_dir + list_file

26e2fe9f   Chunk   MPB steganalysis ...
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
        X = []
        Y = []
        dict_tagbuf = {}
        dict_dataset = {}

        with open(list_file, 'rb') as tsvfile:
            tsvfile = csv.reader(tsvfile, delimiter='\t')
            for line in tsvfile:
                imgname = line[0] + '.jpg'
                dict_tagbuf[imgname] = line[1]

        dir = base_dir + 'Feat/'
        for path, subdirs, files in os.walk(dir + 'Train/'):
            for name in files:
                featpath = os.path.join(path, name)
                # print featpath
                with open(featpath, 'rb') as featfile:
                    imgname = path.split('/')[-1] + name.replace('.mpb', '.jpg')
                    dict_dataset[imgname] = json.loads(featfile.read())

        for imgname, tag in dict_tagbuf.items():
            tag = 1 if tag == 'True' else 0
            X.append(dict_dataset[imgname])
            Y.append(tag)

        return X, Y


6d219855   Chunk   MPB finished. The...
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
    def _load_dataset_from_hbase(self, table='ImgCV'):
        pass


    def _model_svm_train_sk(self, X, Y):
        timer = Timer()
        timer.mark()
        lin_clf = svm.LinearSVC()
        lin_clf.fit(X, Y)
        with open('res/tmp.model', 'wb') as modelfile:
            model = pickle.dump(lin_clf, modelfile)

        timer.report()

        self.svm = 'sk'
        self.model = lin_clf

        return lin_clf

    def _model_svm_predict_sk(self, image, clf=None):
        if clf is None:
            if self.svm == 'sk' and self.model != None:
                clf = self.model
            else:
                with open('res/tmp.model', 'rb') as modelfile:
                    clf = pickle.load(modelfile)

c6c61f81   Chunk   staged.
266
267
        im = mjpeg.Jpeg(image, key=sample_key)
        ciq = im.coef_arrays[mjpeg.colorMap['Y']]
6d219855   Chunk   MPB finished. The...
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
        tpm = self.get_trans_prob_mat(ciq)

        return clf.predict(tpm)


    def _model_svm_train_cv(self, X, Y):
        svm_params = dict(kernel_type=cv2.SVM_LINEAR,
                          svm_type=cv2.SVM_C_SVC,
                          C=2.67, gamma=5.383)

        timer = Timer()
        timer.mark()
        svm = cv2.SVM()
        svm.train(X, Y, params=svm_params)
        svm.save('res/svm_data.model')
26e2fe9f   Chunk   MPB steganalysis ...
283

6d219855   Chunk   MPB finished. The...
284
285
        self.svm = 'cv'
        self.model = svm
26e2fe9f   Chunk   MPB steganalysis ...
286

6d219855   Chunk   MPB finished. The...
287
        return svm
26e2fe9f   Chunk   MPB steganalysis ...
288

6d219855   Chunk   MPB finished. The...
289
290
291
292
293
294
295
    def _model_svm_predict_cv(self, image, svm=None):
        if svm is None:
            if self.svm == 'cv' and self.model != None:
                clf = self.model
            else:
                svm = cv2.SVM()
                svm.load('res/svm_data.model')
26e2fe9f   Chunk   MPB steganalysis ...
296

c6c61f81   Chunk   staged.
297
298
        im = mjpeg.Jpeg(image, key=sample_key)
        ciq = im.coef_arrays[mjpeg.colorMap['Y']]
6d219855   Chunk   MPB finished. The...
299
        tpm = self.get_trans_prob_mat(ciq)
26e2fe9f   Chunk   MPB steganalysis ...
300

6d219855   Chunk   MPB finished. The...
301
        return svm.predict(tpm)
26e2fe9f   Chunk   MPB steganalysis ...
302

6d219855   Chunk   MPB finished. The...
303
304
305
    def train_svm(self):
        X, Y = self.load_dataset('local', 'images_map_Train.tsv')
        return self._model_svm_train_sk(X, Y)
26e2fe9f   Chunk   MPB steganalysis ...
306

b69b6985   Chunk   py module refract...
307
    def predict_svm(self, image):
6d219855   Chunk   MPB finished. The...
308
        return self._model_svm_predict_sk(image)
26e2fe9f   Chunk   MPB steganalysis ...