Blame view

msteg/steganalysis/MPB.py 8.11 KB
26e2fe9f   Chunk   MPB steganalysis ...
1
2
3
4
5
6
7
8
__author__ = 'chunk'
"""
Yun Q. Shi, et al - A Markov Process Based Approach to Effective Attacking JPEG Steganography
"""

import time
import math
import numpy as np
04cd1acf   Chunk   before 开题答辩~~~
9

09268ae3   Chunk   An Algorithm-Bug ...
10
11
12
13
14
from .. import *
from ...mjpeg import Jpeg,colorMap
from ...common import *

import csv
26e2fe9f   Chunk   MPB steganalysis ...
15
16
17
18
import json
import pickle
import cv2
from sklearn import svm
6d219855   Chunk   MPB finished. The...
19

26e2fe9f   Chunk   MPB steganalysis ...
20
21
base_dir = '/home/hadoop/data/HeadShoulder/'

f4b5291c   Chunk   Qaulity Calculati...
22
23
24
25

class MPB(StegBase):
    """
    Markov Process Based Steganalyasis Algo.
26e2fe9f   Chunk   MPB steganalysis ...
26
27
    """

6d219855   Chunk   MPB finished. The...
28
    def __init__(self):
26e2fe9f   Chunk   MPB steganalysis ...
29
30
31
32
33
34
35
        StegBase.__init__(self, sample_key)
        self.model = None
        self.svm = None

    def _get_trans_prob_mat_orig(self, ciq, T=4):
        """
        Original!
6d219855   Chunk   MPB finished. The...
36
37
        Calculate Transition Probability Matrix.

26e2fe9f   Chunk   MPB steganalysis ...
38
        :param ciq: jpeg DCT coeff matrix, 2-D numpy array of int16 (pre-abs)
6d219855   Chunk   MPB finished. The...
39
        :param T: signed integer, usually 1~7
26e2fe9f   Chunk   MPB steganalysis ...
40
41
42
43
44
45
46
47
        :return: TPM - 3-D tensor, numpy array of size (2*T+1, 2*T+1, 4)
        """
        ciq = np.absolute(ciq).clip(0, T)
        TPM = np.zeros((2 * T + 1, 2 * T + 1, 4), np.float64)
        # Fh = np.diff(ciq, axis=-1)
        # Fv = np.diff(ciq, axis=0)
        Fh = ciq[:-1, :-1] - ciq[:-1, 1:]
        Fv = ciq[:-1, :-1] - ciq[1:, :-1]
09268ae3   Chunk   An Algorithm-Bug ...
48
        Fd = ciq[:-1, :-1] - ciq[1:, 1:]
26e2fe9f   Chunk   MPB steganalysis ...
49
50
51
        Fm = ciq[:-1, 1:] - ciq[1:, :-1]

        Fh1 = Fh[:-1, :-1]
09268ae3   Chunk   An Algorithm-Bug ...
52
53
54
55
        Fh2 = Fh[:-1, 1:]

        Fv1 = Fv[:-1, :-1]
        Fv2 = Fv[1:, :-1]
26e2fe9f   Chunk   MPB steganalysis ...
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91

        Fd1 = Fd[:-1, :-1]
        Fd2 = Fd[1:, 1:]

        Fm1 = Fm[:-1, 1:]
        Fm2 = Fm[1:, :-1]

        # original:(very slow!)
        for n in range(-T, T + 1):
            for m in range(-T, T + 1):
                dh = np.sum(Fh1 == m) * 1.0
                dv = np.sum(Fv1 == m) * 1.0
                dd = np.sum(Fd1 == m) * 1.0
                dm = np.sum(Fm1 == m) * 1.0

                if dh != 0:
                    TPM[m, n, 0] = np.sum(np.logical_and(Fh1 == m, Fh2 == n)) / dh

                if dv != 0:
                    TPM[m, n, 1] = np.sum(np.logical_and(Fv1 == m, Fv2 == n)) / dv

                if dd != 0:
                    TPM[m, n, 2] = np.sum(np.logical_and(Fd1 == m, Fd2 == n)) / dd

                if dm != 0:
                    TPM[m, n, 3] = np.sum(np.logical_and(Fm1 == m, Fm2 == n)) / dm

        # 1.422729s
        return TPM


    def get_trans_prob_mat(self, ciq, T=4):
        """
        Calculate Transition Probability Matrix.

        :param ciq: jpeg DCT coeff matrix, 2-D numpy array of int16 (pre-abs)
4a20967b   Chunk   staged.
92
        :param T: signed integer, usually 1~7
26e2fe9f   Chunk   MPB steganalysis ...
93
94
95
96
97
98
99
100
        :return: TPM - 3-D tensor, numpy array of size (2*T+1, 2*T+1, 4)
        """

        return self._get_trans_prob_mat_orig(ciq, T)


        # timer = Timer()
        ciq = np.absolute(ciq).clip(0, T)
6d219855   Chunk   MPB finished. The...
101
        TPM = np.zeros((2 * T + 1, 2 * T + 1, 4), np.float64)
04cd1acf   Chunk   before 开题答辩~~~
102
        # Fh = np.diff(ciq, axis=-1)
6d219855   Chunk   MPB finished. The...
103
104
        # Fv = np.diff(ciq, axis=0)
        Fh = ciq[:-1, :-1] - ciq[:-1, 1:]
26e2fe9f   Chunk   MPB steganalysis ...
105
        Fv = ciq[:-1, :-1] - ciq[1:, :-1]
09268ae3   Chunk   An Algorithm-Bug ...
106
107
        Fd = ciq[:-1, :-1] - ciq[1:, 1:]
        Fm = ciq[:-1, 1:] - ciq[1:, :-1]
26e2fe9f   Chunk   MPB steganalysis ...
108
109
110

        Fh1 = Fh[:-1, :-1].ravel()
        Fh2 = Fh[:-1, 1:].ravel()
09268ae3   Chunk   An Algorithm-Bug ...
111
112
113
114
115
116
117
118
119
120

        Fv1 = Fv[:-1, :-1].ravel()
        Fv2 = Fv[1:, :-1].ravel()

        Fd1 = Fd[:-1, :-1].ravel()
        Fd2 = Fd[1:, 1:].ravel()

        Fm1 = Fm[:-1, 1:].ravel()
        Fm2 = Fm[1:, :-1].ravel()

26e2fe9f   Chunk   MPB steganalysis ...
121

04cd1acf   Chunk   before 开题答辩~~~
122
123

        # 0.089754s
26e2fe9f   Chunk   MPB steganalysis ...
124
        # timer.mark()
04cd1acf   Chunk   before 开题答辩~~~
125
126
        # TPM[Fh1.ravel(), Fh2.ravel(), 0] += 1
        # TPM[Fv1.ravel(), Fv2.ravel(), 1] += 1
26e2fe9f   Chunk   MPB steganalysis ...
127
        # TPM[Fd1.ravel(), Fd2.ravel(), 2] += 1
04cd1acf   Chunk   before 开题答辩~~~
128
129
        # TPM[Fm1.ravel(), Fm2.ravel(), 3] += 1
        # timer.report()
26e2fe9f   Chunk   MPB steganalysis ...
130

04cd1acf   Chunk   before 开题答辩~~~
131
132
        # 1.459668s
        # timer.mark()
26e2fe9f   Chunk   MPB steganalysis ...
133
134
135
136
137
138
139
140
141
142
143
        # for i in range(len(Fh1)):
        #     TPM[Fh1[i], Fh2[i], 0] += 1
        # for i in range(len(Fv1)):
        #     TPM[Fv1[i], Fv2[i], 1] += 1
        # for i in range(len(Fd1)):
        #     TPM[Fd1[i], Fd2[i], 2] += 1
        # for i in range(len(Fm1)):
        #     TPM[Fm1[i], Fm2[i], 3] += 1
        # timer.report()

        # 1.463982s
04cd1acf   Chunk   before 开题答辩~~~
144
145
146
        # timer.mark()
        for m, n in zip(Fh1.ravel(), Fh2.ravel()):
            TPM[m, n, 0] += 1
09268ae3   Chunk   An Algorithm-Bug ...
147

04cd1acf   Chunk   before 开题答辩~~~
148
149
150
151
152
153
154
155
156
        for m, n in zip(Fv1.ravel(), Fv2.ravel()):
            TPM[m, n, 1] += 1

        for m, n in zip(Fd1.ravel(), Fd2.ravel()):
            TPM[m, n, 2] += 1

        for m, n in zip(Fm1.ravel(), Fm2.ravel()):
            TPM[m, n, 3] += 1
        # timer.report()
26e2fe9f   Chunk   MPB steganalysis ...
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193

        # 0.057505s
        # timer.mark()
        for m in range(-T, T + 1):
            dh = np.sum(Fh1 == m) * 1.0
            dv = np.sum(Fv1 == m) * 1.0
            dd = np.sum(Fd1 == m) * 1.0
            dm = np.sum(Fm1 == m) * 1.0

            if dh != 0:
                TPM[m, :, 0] /= dh

            if dv != 0:
                TPM[m, :, 1] /= dv

            if dd != 0:
                TPM[m, :, 2] /= dd

            if dm != 0:
                TPM[m, :, 3] /= dm
        # timer.report()

        return TPM

    def load_dataset(self, mode, file):
        if mode == 'local':
            return self._load_dataset_from_local(file)
        elif mode == 'remote' or mode == 'hbase':
            return self._load_dataset_from_hbase(file)
        else:
            raise Exception("Unknown mode!")

    def _load_dataset_from_local(self, list_file='images_map_Train.tsv'):
        """
        load jpeg dataset according to a file of file-list.

        :param list_file: a tsv file with each line for a jpeg file path
6d219855   Chunk   MPB finished. The...
194
195
196
197
198
199
200
201
202
        :return:(X,Y) for SVM
        """
        list_file = base_dir + list_file

        X = []
        Y = []
        dict_tagbuf = {}
        dict_dataset = {}

26e2fe9f   Chunk   MPB steganalysis ...
203
204
205
206
207
208
        with open(list_file, 'rb') as tsvfile:
            tsvfile = csv.reader(tsvfile, delimiter='\t')
            for line in tsvfile:
                imgname = line[0] + '.jpg'
                dict_tagbuf[imgname] = line[1]

6d219855   Chunk   MPB finished. The...
209
210
        dir = base_dir + 'Feat/'
        for path, subdirs, files in os.walk(dir + 'Train/'):
26e2fe9f   Chunk   MPB steganalysis ...
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
            for name in files:
                featpath = os.path.join(path, name)
                # print featpath
                with open(featpath, 'rb') as featfile:
                    imgname = path.split('/')[-1] + name.replace('.mpb', '.jpg')
                    dict_dataset[imgname] = json.loads(featfile.read())

        for imgname, tag in dict_tagbuf.items():
            tag = 1 if tag == 'True' else 0
            X.append(dict_dataset[imgname])
            Y.append(tag)

        return X, Y


    def _load_dataset_from_hbase(self, table='ImgCV'):
        pass


    def _model_svm_train_sk(self, X, Y):
        timer = Timer()
        timer.mark()
        lin_clf = svm.LinearSVC()
        lin_clf.fit(X, Y)
        with open('res/tmp.model', 'wb') as modelfile:
            model = pickle.dump(lin_clf, modelfile)

        timer.report()
6d219855   Chunk   MPB finished. The...
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265

        self.svm = 'sk'
        self.model = lin_clf

        return lin_clf

    def _model_svm_predict_sk(self, image, clf=None):
        if clf is None:
            if self.svm == 'sk' and self.model != None:
                clf = self.model
            else:
                with open('res/tmp.model', 'rb') as modelfile:
                    clf = pickle.load(modelfile)

        im = mjpeg.Jpeg(image, key=sample_key)
        ciq = im.coef_arrays[mjpeg.colorMap['Y']]
        tpm = self.get_trans_prob_mat(ciq)

        return clf.predict(tpm)


    def _model_svm_train_cv(self, X, Y):
        svm_params = dict(kernel_type=cv2.SVM_LINEAR,
                          svm_type=cv2.SVM_C_SVC,
                          C=2.67, gamma=5.383)

        timer = Timer()
c6c61f81   Chunk   staged.
266
267
        timer.mark()
        svm = cv2.SVM()
6d219855   Chunk   MPB finished. The...
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
        svm.train(X, Y, params=svm_params)
        svm.save('res/svm_data.model')

        self.svm = 'cv'
        self.model = svm

        return svm

    def _model_svm_predict_cv(self, image, svm=None):
        if svm is None:
            if self.svm == 'cv' and self.model != None:
                clf = self.model
            else:
                svm = cv2.SVM()
                svm.load('res/svm_data.model')
26e2fe9f   Chunk   MPB steganalysis ...
283

6d219855   Chunk   MPB finished. The...
284
285
        im = mjpeg.Jpeg(image, key=sample_key)
        ciq = im.coef_arrays[mjpeg.colorMap['Y']]
26e2fe9f   Chunk   MPB steganalysis ...
286
        tpm = self.get_trans_prob_mat(ciq)
6d219855   Chunk   MPB finished. The...
287

26e2fe9f   Chunk   MPB steganalysis ...
288
        return svm.predict(tpm)
6d219855   Chunk   MPB finished. The...
289
290
291
292
293
294
295

    def train_svm(self):
        X, Y = self.load_dataset('local', 'images_map_Train.tsv')
        return self._model_svm_train_sk(X, Y)

    def predict_svm(self, image):
        return self._model_svm_predict_sk(image)
26e2fe9f   Chunk   MPB steganalysis ...

c6c61f81   Chunk   staged.

6d219855   Chunk   MPB finished. The...

26e2fe9f   Chunk   MPB steganalysis ...

6d219855   Chunk   MPB finished. The...

26e2fe9f   Chunk   MPB steganalysis ...

6d219855   Chunk   MPB finished. The...

26e2fe9f   Chunk   MPB steganalysis ...

b69b6985   Chunk   py module refract...

6d219855   Chunk   MPB finished. The...

26e2fe9f   Chunk   MPB steganalysis ...