def train(self, X, Y): try: if self.toolset == 'sklearn': return self._train_sklearn(X, Y) elif self.toolset == 'opencv': return self._train_opencv(X, Y) elif self.toolset == 'libsvm': return self._train_libscm(X, Y) elif self.toolset == 'spark': return self._train_spark(X, Y) else: raise Exception("Unknown toolset!") def predict(self, feat, model=None): if self.toolset == 'sklearn': return self._predict_sklearn(feat, model) elif self.toolset == 'opencv': return self._predict_opencv(feat, model) elif self.toolset == 'libsvm': return self._predict_libsvm(feat, model) elif self.toolset == 'libsvm': return self._predict_spark(feat, model) else: raise Exception("Unknown toolset!") def test(self, X, Y, model=None): if self.toolset == 'sklearn': return self._test_sklearn(X, Y, model) elif self.toolset == 'opencv': return self._test_opencv(X, Y, model) elif self.toolset == 'libsvm': return self._test_libsvm(X, Y, model) elif self.toolset == 'libsvm': return self._test_spark(X, Y, model) else: raise Exception("Unknown toolset!") COMPRESSED=/home/hadoop/workspace/pycharm/tmp/ImageR/mdata.zip,/home/hadoop/workspace/pycharm/tmp/ImageR/mfeat.zip,/home/hadoop/workspace/pycharm/tmp/ImageR/mjpeg.zip,/home/hadoop/workspace/pycharm/tmp/ImageR/msteg.zip,/home/hadoop/workspace/pycharm/tmp/ImageR/mmodel.zip,/home/hadoop/workspace/pycharm/tmp/ImageR/mspark.zip