__author__ = 'chunk' from ..common import * from ..mdata import MSR, CV, ILSVRC, ILSVRC_S, crop from ..mmodel.caffe.helper import * def test_MSR(): dmsr = MSR.DataMSR() # msrd.format() # msrd.build_list() # dmsr.store_image() # dmsr.store_tag() # dmsr.extract_feat(feattype='ibd') dmsr.store_feat(feattype='ibd') def test_CV(): dcv = CV.DataCV() # dcv.format() # dcv.build_list() # dcv.get_feat() # dcv.extract_feat() print dcv.get_feat("/home/hadoop/data/HeadShoulder/dst/Train/Img/132/7c5fe33bd194fc1ae7b0023956ebd.jpg", 'ibd') X, Y = dcv.load_data() print len(X), len(Y) def test_ILSVRC(category='Train_100'): timer = Timer() # dil = ILSVRC.DataILSVRC(base='/data/hadoop/ImageNet/ILSVRC/ILSVRC2013_DET_val', category='Train') dil = ILSVRC.DataILSVRC(base_dir='/data/hadoop/ImageNet/ILSVRC/ILSVRC2013_DET_val', category=category) # dil = ILSVRC.DataILSVRC(base='/media/chunk/Elements/D/data/ImageNet/img/ILSVRC2013_DET_val', category='Train_1') print '[time]category:', category timer.mark() print '[time]formatting...' dil.format() timer.report() timer.mark() print '[time]embedding...' dil.embed(rate=0.2) timer.report() timer.mark() print '[time]extracting...' dil.extract_feat(feattype='ibd') timer.report() # dil.extract_feat(feattype='hog') # timer.mark() # dil.store_img() # timer.report() # timer.mark() # dil.store_tag() # timer.report() # # timer.mark() # dil.store_info() # timer.report() # # timer.mark() # dil.store_feat() # timer.report() def test_ILSVRC_S_LOCAL(): timer = Timer() timer.mark() dil = ILSVRC.DataILSVRC(base_dir='/data/hadoop/ImageNet/ILSVRC/ILSVRC2013_DET_val', category='Train_2') dil.delete_table() dil.format() dil.store_img() timer.report() dils = ILSVRC_S.DataILSVRC_S(base='/data/hadoop/ImageNet/ILSVRC/ILSVRC2013_DET_val', category='Train_2') # dils._extract_data(mode='hbase', writeback=True) # dils._embed_data(mode='hbase', rate=0.1, readforward=True, writeback=True) # dils._extract_feat( mode='hbase', feattype='ibd', readforward=True, writeback=True) dils._extract_data(mode='hbase', writeback=False) dils._embed_data(mode='hbase', rate=0.1, readforward=False, writeback=False) dils._extract_feat(mode='hbase', feattype='ibd', readforward=False, writeback=True) timer.report() def test_ILSVRC_S_SPARK(category='Train_1000'): timer = Timer() timer.mark() dil = ILSVRC.DataILSVRC(base_dir='/data/hadoop/ImageNet/ILSVRC/ILSVRC2013_DET_val', category=category) dil.delete_table() dil.format() dil.store_img() timer.report() # return dils = ILSVRC_S.DataILSVRC_S(base='ILSVRC2013_DET_val', category=category) timer.mark() dils._extract_data(mode='spark', writeback=False) timer.report() # print dils.rdd_data.count() # pass # return timer.mark() dils._embed_data(mode='spark', rate=0.2, readforward=False, writeback=False) timer.report() timer.mark() dils._extract_feat(mode='spark', feattype='ibd', readforward=False, writeback=True, withdata=True) timer.report() def test_ILSVRC_S(): # test_ILSVRC_S_LOCAL() test_ILSVRC_S_SPARK() def test_pipeline(): timer = Timer() timer.mark() dils = ILSVRC_S.DataILSVRC_S(base='MSPIDER', category=None) dils._extract_data(mode='spark', writeback=False) dils._embed_data(mode='spark', rate=0.1, readforward=False, writeback=False) dils._extract_feat(mode='spark', feattype='ibd', readforward=False, writeback=True, withdata=True) timer.report() def test_crop(): # crop.crop_Test() dil = ILSVRC.DataILSVRC(base_dir='/data/hadoop/ImageNet/ILSVRC/ILSVRC2013_DET_val', category='Train_5000') dil.crop(size=(200, 200)) dil2 = ILSVRC.DataILSVRC(base_dir='/data/hadoop/ImageNet/ILSVRC/ILSVRC2013_DET_val', category='Train_5000_crop_pil') dil2.format() dil2.embed(rate=0.2) X, Y = dil2.load_data(mode='local', feattype='coef') print X[0] print Y print np.array(X).shape, np.array(Y).shape def test_caffe(): # read_lmdb(lmdb_name=os.path.join(caffe_root, 'examples/imager/data_lmdb')) # return dil = ILSVRC.DataILSVRC(base_dir='/data/hadoop/ImageNet/ILSVRC/ILSVRC2013_DET_val', category='Train_5000_crop_pil') X, Y = dil.load_data(mode='local', feattype='coef') print X[0] print Y print np.array(X).shape, np.array(Y).shape write_lmdb(X[2000:3000],Y[2000:3000]) if __name__ == '__main__': # test_MSR() # test_CV() # test_ILSVRC() # test_ILSVRC_S() test_pipeline() print 'helllo'