__author__ = 'chunk' import os, sys import time import numpy as np from sklearn import cross_validation import theano import theano.tensor as T from theano.tensor.signal import downsample from theano.tensor.nnet import conv import cPickle class LogisticRegression(object): """ Multi-class Logistic Regression Class """ def __init__(self, input, n_in, n_out): """ Initialize the parameters of the logistic regression """ self.W = theano.shared( value=np.zeros( (n_in, n_out), dtype=theano.config.floatX ), name='W', borrow=True ) self.b = theano.shared( value=np.zeros( (n_out,), dtype=theano.config.floatX ), name='b', borrow=True ) self.p_y_given_x = T.nnet.softmax(T.dot(input, self.W) + self.b) self.y_pred = T.argmax(self.p_y_given_x, axis=1) self.params = [self.W, self.b] def negative_log_likelihood(self, y): """ Return the mean of the negative log-likelihood of the prediction of this model under a given target distribution. """ return -T.mean(T.log(self.p_y_given_x)[T.arange(y.shape[0]), y]) def errors(self, y): """ Return a float representing the number of errors in the minibatch over the total number of examples of the minibatch ; zero one loss over the size of the minibatch """ if y.ndim != self.y_pred.ndim: raise TypeError( 'y should have the same shape as self.y_pred', ('y', y.type, 'y_pred', self.y_pred.type) ) if y.dtype.startswith('int'): return T.mean(T.neq(self.y_pred, y)) else: raise NotImplementedError() class HiddenLayer(object): def __init__(self, rng, input, n_in, n_out, W=None, b=None, activation=T.tanh): self.input = input if W is None: W_values = np.asarray( rng.uniform( low=-np.sqrt(6. / (n_in + n_out)), high=np.sqrt(6. / (n_in + n_out)), size=(n_in, n_out) ), dtype=theano.config.floatX ) if activation == theano.tensor.nnet.sigmoid: W_values *= 4 W = theano.shared(value=W_values, name='W', borrow=True) if b is None: b_values = np.zeros((n_out,), dtype=theano.config.floatX) b = theano.shared(value=b_values, name='b', borrow=True) self.W = W self.b = b lin_output = T.dot(input, self.W) + self.b self.output = ( lin_output if activation is None else activation(lin_output) ) # parameters of the model self.params = [self.W, self.b] class MLP(object): def __init__(self, rng, input, n_in, n_hidden, n_out): self.hiddenLayer = HiddenLayer( rng=rng, input=input, n_in=n_in, n_out=n_hidden, activation=T.tanh ) self.logRegressionLayer = LogisticRegression( input=self.hiddenLayer.output, n_in=n_hidden, n_out=n_out ) self.L1 = ( abs(self.hiddenLayer.W).sum() + abs(self.logRegressionLayer.W).sum() ) self.L2_sqr = ( (self.hiddenLayer.W ** 2).sum() + (self.logRegressionLayer.W ** 2).sum() ) self.negative_log_likelihood = ( self.logRegressionLayer.negative_log_likelihood ) self.errors = self.logRegressionLayer.errors self.params = self.hiddenLayer.params + self.logRegressionLayer.params class ConvPoolLayer(object): """Pool Layer of a convolutional network """ def __init__(self, rng, input, filter_shape, image_shape, poolsize=(2, 2)): assert image_shape[1] == filter_shape[1] self.input = input fan_in = np.prod(filter_shape[1:]) fan_out = (filter_shape[0] * np.prod(filter_shape[2:]) / np.prod(poolsize)) W_bound = np.sqrt(6. / (fan_in + fan_out)) self.W = theano.shared( np.asarray( rng.uniform(low=-W_bound, high=W_bound, size=filter_shape), dtype=theano.config.floatX ), borrow=True ) b_values = np.zeros((filter_shape[0],), dtype=theano.config.floatX) self.b = theano.shared(value=b_values, borrow=True) conv_out = conv.conv2d( input=input, filters=self.W, filter_shape=filter_shape, image_shape=image_shape ) pooled_out = downsample.max_pool_2d( input=conv_out, ds=poolsize, ignore_border=True ) self.output = T.tanh(pooled_out + self.b.dimshuffle('x', 0, 'x', 'x')) self.params = [self.W, self.b] def shared_dataset(data_xy, borrow=True): """ Function that loads the dataset into shared variables The reason we store our dataset in shared variables is to allow Theano to copy it into the GPU memory (when code is run on GPU). Since copying data into the GPU is slow, copying a minibatch everytime is needed (the default behaviour if the data is not in a shared variable) would lead to a large decrease in performance. """ data_x, data_y = data_xy shared_x = theano.shared(np.asarray(data_x, dtype=theano.config.floatX), borrow=borrow) shared_y = theano.shared(np.asarray(data_y, dtype=theano.config.floatX), borrow=borrow) # When storing data on the GPU it has to be stored as floats # therefore we will store the labels as ``floatX`` as well # (``shared_y`` does exactly that). But during our computations # we need them as ints (we use labels as index, and if they are # floats it doesn't make sense) therefore instead of returning # ``shared_y`` we will have to cast it to int. This little hack # lets ous get around this issue return shared_x, T.cast(shared_y, 'int32') def train_cnn_example(X=None, Y=None, dataset=os.path.join('', '../../res/', 'ils_crop.pkl'), learning_rate=0.1, n_epochs=200, nkerns=[20, 50, 50], batch_size=400): if X == None: assert dataset != None with open(dataset, 'rb') as f: train_set, test_set = cPickle.load(f) X_train, Y_train = train_set X_test, Y_test = test_set else: X_train, X_test, Y_train, Y_test = cross_validation.train_test_split(X, Y, test_size=0.2, random_state=0) X_train, Y_train = shared_dataset((X_train, Y_train)) X_test, Y_test = shared_dataset((X_test, Y_test)) # X_train = theano.shared(np.asarray(X_train, dtype=theano.config.floatX), borrow=True) # Y_train = theano.shared(np.asarray(Y_train, dtype=theano.config.floatX), borrow=True) # X_test = theano.shared(np.asarray(X_test, dtype=theano.config.floatX), borrow=True) # Y_test = theano.shared(np.asarray(Y_test, dtype=theano.config.floatX), borrow=True) n_train_batches = X_train.get_value(borrow=True).shape[0] / batch_size n_test_batches = X_test.get_value(borrow=True).shape[0] / batch_size print X_train.get_value(borrow=True).shape, Y_train.shape rng = np.random.RandomState(12306) index = T.lscalar() x = T.matrix('x') y = T.ivector('y') ###################### # BUILD ACTUAL MODEL # ###################### print '... building the model' layer0_input = x.reshape((batch_size, 1, 304, 304)) # Construct the first convolutional pooling layer: # filtering reduces the image size to (304-8+1 , 304-8+1) = (297, 297) # maxpooling reduces this further to (297/4, 297/4) = (74, 74) # 4D output tensor is thus of shape (batch_size, nkerns[0], 74, 74) layer0 = ConvPoolLayer( rng, input=layer0_input, image_shape=(batch_size, 1, 304, 304), filter_shape=(nkerns[0], 1, 8, 8), poolsize=(4, 4) ) # Construct the second convolutional pooling layer # filtering reduces the image size to (74-8+1, 74-8+1) = (67, 67) # maxpooling reduces this further to (67/4, 67/4) = (16, 16) # 4D output tensor is thus of shape (batch_size, nkerns[1], 16, 16) layer1 = ConvPoolLayer( rng, input=layer0.output, image_shape=(batch_size, nkerns[0], 74, 74), filter_shape=(nkerns[1], nkerns[0], 8, 8), poolsize=(4, 4) ) # Construct the third convolutional pooling layer # filtering reduces the image size to (16-5+1, 16-5+1) = (12, 12) # maxpooling reduces this further to (12/3, 12/3) = (4, 4) # 4D output tensor is thus of shape (batch_size, nkerns[2], 4, 4) layer2 = ConvPoolLayer( rng, input=layer1.output, image_shape=(batch_size, nkerns[1], 16, 16), filter_shape=(nkerns[2], nkerns[1], 5, 5), poolsize=(3, 3) ) # the HiddenLayer being fully-connected, it operates on 2D matrices of # shape (batch_size, num_pixels) (i.e matrix of rasterized images). # This will generate a matrix of shape (batch_size, nkerns[2] * 4 * 4), # or (500, 50 * 4 * 4) = (500, 800) with the default values. layer3_input = layer2.output.flatten(2) # construct a fully-connected sigmoidal layer layer3 = HiddenLayer( rng, input=layer3_input, n_in=nkerns[2] * 4 * 4, n_out=500, activation=T.tanh ) # classify the values of the fully-connected sigmoidal layer layer4 = LogisticRegression(input=layer3.output, n_in=500, n_out=2) # the cost we minimize during training is the NLL of the model cost = layer4.negative_log_likelihood(y) params = layer4.params + layer3.params + layer2.params + layer1.params + layer0.params grads = T.grad(cost, params) updates = [ (param_i, param_i - learning_rate * grad_i) for param_i, grad_i in zip(params, grads) ] """ Total Parameters: >>> 20 * 64 + 1000 * 64 + 2500 * 25 + 50 * 16 * 500 + 500 * 2 528780 """ train_model = theano.function( [index], cost, updates=updates, givens={ x: X_train[index * batch_size: (index + 1) * batch_size], y: Y_train[index * batch_size: (index + 1) * batch_size] } ) test_model = theano.function( [index], layer4.errors(y), givens={ x: X_test[index * batch_size: (index + 1) * batch_size], y: Y_test[index * batch_size: (index + 1) * batch_size] } ) ############### # TRAIN MODEL # ############### print '... training' # early-stopping parameters patience = 10000 # look as this many examples regardless patience_increase = 2 # wait this much longer when a new best is found improvement_threshold = 0.995 # a relative improvement of this much is # considered significant validation_frequency = min(n_train_batches, patience / 2) # go through this many # minibatche before checking the network # on the validation set; in this case we # check every epoch best_validation_loss = np.inf best_iter = 0 test_score = 0. start_time = time.clock() epoch = 0 done_looping = False while (epoch < n_epochs) and (not done_looping): epoch = epoch + 1 for minibatch_index in xrange(n_train_batches): iter = (epoch - 1) * n_train_batches + minibatch_index # if iter % 100 == 0: # print 'training @ iter = ', iter print 'training @ iter = ', iter cost_ij = train_model(minibatch_index) if (iter + 1) % validation_frequency == 0: # compute zero-one loss on validation set validation_losses = [test_model(i) for i in xrange(n_test_batches)] this_validation_loss = np.mean(validation_losses) print('epoch %i, minibatch %i/%i, validation error %f %%' % (epoch, minibatch_index + 1, n_train_batches, this_validation_loss * 100.)) # if we got the best validation score until now if this_validation_loss < best_validation_loss: # improve patience if loss improvement is good enough if this_validation_loss < best_validation_loss * \ improvement_threshold: patience = max(patience, iter * patience_increase) # save best validation score and iteration number best_validation_loss = this_validation_loss best_iter = iter if patience <= iter: done_looping = True break end_time = time.clock() print('Optimization complete.') print('Best validation score of %f %% obtained at iteration %i, ' 'with test performance %f %%' % (best_validation_loss * 100., best_iter + 1, test_score * 100.)) print >> sys.stderr, ('The code for file ' + os.path.split(__file__)[1] + ' ran for %.2fm' % ((end_time - start_time) / 60.))