__author__ = 'chunk' """ ref - http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.115.3651&rep=rep1&type=pdf

This module implements the rather sophisticated F5 algorithm which was invented by Andreas Westfeld.

Unlike its vastly inferior predecessors, namely F3 and F4, it features matrix encoding which makes it possible to embed a chunk of k bits within 2^k - 1 bits of the cover data and only change one bit (at most). A bit change is done by subtracting the absolute value of the corresponding DCT coefficient. When the embedding process begins, the parameter k is computed based on the capacity of the cover image and the prospective embedding ratio. With small amount of hidden data k becomes large which leads to a greater embedding efficiency (embedded information per bit change).
A permutation (initialized by a user-supplied seed) of the DCT coefficients helps to scatter each chunk across the entire image. F5 can be seen as meta-algorithm as it uses a coding scheme to change as little data as possible and then applies a simpler algorithm (such as F3) to actually embed data. That is why this module allows the user to specify which embedding function (one of JSteg, F3, F4) should be used. """ import math import numpy as np import numpy.random as rnd from .. import * from .F4 import F4 from ...mjpeg import Jpeg from ...common import * class F5(StegBase): """ This module has two methods: embed_raw_data to embed data with the F5 algorithm and extract_raw_data to extract data which was embedded previously. """ def __init__(self, key=sample_key, k=None): """ Constructor of the F5 class. """ StegBase.__init__(self, key) self._embed_fun = None self.default_embedding = True # needed because k is embedded separately self.k_coeff = k def _get_cov_data(self, img_path): """ Returns DCT coefficients of the cover image. """ self.cov_jpeg = Jpeg(img_path, key=self.key) cov_data = self.cov_jpeg.getsignal(channel='Y') self.cov_data = np.array(cov_data, dtype=np.int16) return self.cov_data def embed_raw_data(self, src_cover, src_hidden, tgt_stego, embed_fun='Default'): """This method embeds arbitrary data into a cover image. The cover image must be a JPEG. @param embed_fun: Specifies which embedding function should be used. Must be one of 'Default', 'F3', 'Jsteg'. If 'Default' is selected, the algorithm uses the same behavior as Westfeld's implementation, i.e. decrementing absolute values for n > 1 (F3) and using F4 in the special case n = 1. Selecting F3 or JSteg results in using that scheme for all n. """ self.t0 = time.time() if embed_fun == 'F3': self._embed_fun = self._f3_embed self.default_embedding = False elif embed_fun == 'JSteg' or embed_fun == 'LSB': self._embed_fun = self._jsteg_embed self.default_embedding = False else: self._embed_fun = self._f3_embed self.default_embedding = True try: cov_data = self._get_cov_data(src_cover) hid_data = self._get_hid_data(src_hidden) # print hid_data.dtype,type(hid_data),hid_data.tolist() cov_data, bits_cnt = self._raw_embed(cov_data, hid_data) if bits_cnt < np.size(hid_data) * 8: raise Exception("Expected embedded size is %db but actually %db." % ( np.size(hid_data) * 8, bits_cnt)) self.cov_jpeg.setsignal(cov_data, channel='Y') self.cov_jpeg.Jwrite(tgt_stego) # size_cov = os.path.getsize(tgt_stego) size_cov = np.size(cov_data) / 8 size_embedded = np.size(hid_data) self._display_stats("embedded", size_cov, size_embedded, time.time() - self.t0) except TypeError as e: raise e except Exception as expt: print "Exception when embedding!" raise def extract_raw_data(self, src_steg, tgt_hidden, embed_fun='Default'): self.t0 = time.time() if embed_fun == 'F3': self._embed_fun = self._f3_embed self.default_embedding = False elif embed_fun == 'JSteg' or embed_fun == 'LSB': self._embed_fun = self._jsteg_embed self.default_embedding = False else: self._embed_fun = self._f3_embed self.default_embedding = True try: steg_data = self._get_cov_data(src_steg) # emb_size = os.path.getsize(src_steg) emb_size = np.size(steg_data) / 8 # recovering file size header_size = 4 * 8 size_data, bits_cnt = self._raw_extract(steg_data, header_size) if bits_cnt < header_size: raise Exception("Expected embedded size is %db but actually %db." % ( header_size, bits_cnt)) size_data = bits2bytes(size_data[:header_size]) print size_data size_hd = 0 for i in xrange(4): size_hd += size_data[i] * 256 ** i raw_size = size_hd * 8 if raw_size > np.size(steg_data): raise Exception("Supposed secret data too large for stego image.") hid_data, bits_cnt = self._raw_extract(steg_data, raw_size) if bits_cnt < raw_size: raise Exception("Expected embedded size is %db but actually %db." % ( raw_size, bits_cnt)) hid_data = bits2bytes(hid_data) # print hid_data.dtype,type(hid_data),hid_data.tolist() hid_data[4:].tofile(tgt_hidden) self._display_stats("extracted", emb_size, np.size(hid_data), time.time() - self.t0) except Exception as expt: print "Exception when extracting!" raise def _embed_k(self, cov_data, hid_data): np.random.seed(self.seed) self.dct_p = np.random.permutation(cov_data.size) self.k_coeff = self._find_max_k(cov_data, hid_data) self.ui.display_status('setting k = %d' % self.k_coeff) k_split = self.lookup_tab.split_byte(self.k_coeff, 1)[-4:] # embed k in F3-like style for m in k_split: success = False while not success: self.cov_ind += 1 while cov_data[self.dct_p[self.cov_ind]] == 0 or \ self.dct_p[self.cov_ind] % 64 == 0: self.cov_ind += 1 if m != cov_data[self.dct_p[self.cov_ind]] & 1: cov_data[self.dct_p[self.cov_ind]] -= \ math.copysign(1, cov_data[self.dct_p[self.cov_ind]]) success = cov_data[self.dct_p[self.cov_ind]] != 0 def _extract_k(self, steg_data): # initializing the MT is done only once in order to retain the state self.dct_p = np.random.seed(self.seed) self.dct_p = np.random.permutation(self.steg_data.size) k_split = np.zeros(4, np.uint8) for i in xrange(k_split.size): self.steg_ind += 1 while self.steg_data[self.dct_p[self.steg_ind]] == 0 or \ self.dct_p[self.steg_ind] % 64 == 0: self.steg_ind += 1 k_split[i] = self.steg_data[self.dct_p[self.steg_ind]] & 1 self.k_coeff = self.lookup_tab.merge_words(tuple([0, 0, 0, 0] + list(k_split)), 1) def _find_max_k(self, cov_data, hid_data): cnt = 4 # information about k take up 4 bits # find number of DCT coefficients update_cnt = 10000 for i, c in enumerate(cov_data): if update_cnt == 0: self._set_progress( int(30 * (float(i) / float(cov_data.size)))) update_cnt = 10000 update_cnt -= 1 # pessimistic, but accurate estimation of the capacity of the image ci = int(c) if (not (ci is 0)) and (not ((i % 64) is 0)) \ and (not (ci is 1)) and (not (ci is -1)): cnt += 1 hid_size = hid_data.size cov_size = cnt if cov_size < hid_size: raise Exception("Cannot fit %d bits in %d DCT coefficients. \ Cover image is too small." % (hid_size, cov_size)) self.ui.display_status('DCT embedding ratio = %f' \ % (float(hid_size) / float(cov_size))) k = 1 while True: k += 1 n = (1 << k) - 1 num_chunks = cov_size / n num_emb_bits = num_chunks * k if num_emb_bits < hid_size: return min(k - 1, 15) # low level embedding functions def _f3_embed(self, cov_data, ind): cov_data[ind] -= math.copysign(1, cov_data[ind]) def _jsteg_embed(self, cov_data, ind): m = 1 ^ (cov_data[ind] & 1) cov_data[ind] = (cov_data[ind] & 0xfffffffe) | m def _raw_embed(self, cov_data, hid_data): k = self.k_coeff n = (1 << k) - 1 if n == 1 and self.default_embedding: # in case k = n = 1, Westfeld's implementation uses F4 for embedding. f4 = F4(key=self.key) return f4._raw_embed(cov_data, hid_data) hid_data = bytes2bits(hid_data) if len(hid_data) % k != 0: hid_data = list(hid_data) + [0 for x in range(k - len(hid_data) % k)] ind_nonzero = np.nonzero(cov_data)[0] if np.size(ind_nonzero) * k < len(hid_data) * n: raise Exception("Supposed secret data too large for stego image.") ind_cov = 0 for ind_hid in range(0, len(hid_data), k): msg_chunk = hid_data[ind_hid:ind_hid + k] cov_chunk = ind_nonzero[ind_cov:ind_cov + n] ind_cov += n success = False while not success: h = 0 for i in xrange(n): h ^= ((cov_data[cov_chunk[i]] & 1) * (i + 1)) scalar_x = 0 for i in xrange(k): scalar_x = (scalar_x << 1) + msg_chunk[ i] # N.B. hid_data[0]:high (that is x2), hid_data[1]:low (that is x1) s = scalar_x ^ h if s != 0: self._embed_fun(cov_data, cov_chunk[s - 1]) else: break if cov_data[cov_chunk[s - 1]] == 0: # shrinkage cov_chunk[s - 1:-1] = cov_chunk[s:] cov_chunk[-1] = ind_nonzero[ind_cov] ind_cov += 1 else: success = True return cov_data, ind_hid + k def _raw_extract(self, steg_data, num_bits): k = self.k_coeff n = (1 << k) - 1 if n == 1 and self.default_embedding: f4 = F4(key=self.key) return f4._raw_extract(steg_data, num_bits) num_bits_ceil = num_bits if num_bits % k != 0: num_bits_ceil = k * (num_bits / k + 1) hid_data = np.zeros(num_bits_ceil, np.uint8) curr_chunk = np.zeros(k, np.uint8) steg_data = steg_data[np.nonzero(steg_data)] ind_hid = 0 for ind_cov in range(0, len(steg_data), n): steg_chunk = steg_data[ind_cov:ind_cov + n] h = 0 # hash value for i in xrange(n): h ^= ((steg_chunk[i] & 1) * (i + 1)) for i in xrange(k): curr_chunk[k - i - 1] = h & 1 # N.B. hid_data[0]:high (that is x2), hid_data[1]:low (that is x1) h >>= 1 hid_data[ind_hid:ind_hid + k] = curr_chunk[0:k] ind_hid += k if ind_hid >= num_bits_ceil: break return hid_data, num_bits_ceil def __str__(self): return 'F5'