__author__ = 'hadoop' from ..common import * from ..mjpeg import * from ..msteg import * from ..msteg.steganography import LSB, F3, F4, F5 from ..mfeat import IntraBlockDiff from ..mmodel.svm import SVM from numpy import array import json import pickle import tempfile import numpy as np from scipy import stats from hashlib import md5 np.random.seed(sum(map(ord, "whoami"))) package_dir = os.path.dirname(os.path.abspath(__file__)) classifier = SVM.ModelSVM(toolset='sklearn') def rddparse_data_CV(raw_row): """ input: (u'key0',u'cf_feat:hog:[0.056273,...]--%--cf_pic:data:\ufffd\ufffd\...--%--cf_tag:hog:True') return: ([0.056273,...],1) """ data = raw_row[1].split('--%--') feat = json.loads(data[0].split(':')[-1]) tag = 1 if data[-1].split(':')[-1] == 'True' else 0 return (feat, tag) def rddparse_data_ILS(raw_row): """ input: (u'key0',u'cf_feat:hog:[0.056273,...]--%--cf_pic:data:\ufffd\ufffd\...--%--cf_tag:hog:True') return: ([0.056273,...],1) In fact we can also use mapValues. """ key = raw_row[0] # if key == '04650c488a2b163ca8a1f52da6022f03.jpg': # with open('/tmp/hhhh','wb') as f: # f.write(raw_row[1].decode('unicode-escape')).encode('latin-1') items = raw_row[1].decode('unicode-escape').encode('latin-1').split('--%--') data = items[0].split('cf_pic:data:')[-1] return (key, data) def rddparse_all_ILS(raw_row): """ Deprecated """ key = raw_row[0] items = raw_row[1].decode('unicode-escape').encode('latin-1').split('--%--') # @TODO # N.B "ValueError: No JSON object could be decoded" Because the spark-hbase IO is based on strings. # And the order of items is not as expected. See ../res/row-sample.txt or check in hbase shell for that. data = [items[0].split('cf_pic:data:')[-1]] + [json.loads(item.split(':')[-1]) for item in items[1:]] return (key, data) def rddparse_dataset_ILS(raw_row): if raw_row[0] == '04650c488a2b163ca8a1f52da6022f03.jpg': print raw_row items = raw_row[1].decode('unicode-escape').encode('latin-1').split('--%--') # tag = int(items[-2].split('cf_tag:' + tagtype)[-1]) # feat = [item for sublist in json.loads(items[-1].split('cf_feat:' + feattype)[-1]) for subsublist in sublist for item in subsublist] tag = int(items[-1].split(':')[-1]) feat = [item for sublist in json.loads(items[0].split(':')[-1]) for subsublist in sublist for item in subsublist] return (tag, feat) def rddinfo_ILS(img, info_rate=None, tag_chosen=None, tag_class=None): """ Tempfile is our friend. (?) """ info_rate = info_rate if info_rate != None else 0.0 tag_chosen = tag_chosen if tag_chosen != None else stats.bernoulli.rvs(0.8) tag_class = tag_class if tag_class != None else 0 try: tmpf = tempfile.NamedTemporaryFile(suffix='.jpg', mode='w+b', delete=True) tmpf.write(img) tmpf.seek(0) im = Jpeg(tmpf.name, key=sample_key) info = [ im.image_width, im.image_height, im.image_width * im.image_height, im.getCapacity(), im.getQuality(), info_rate, tag_chosen, tag_class ] return info except Exception as e: print e raise finally: tmpf.close() def rddembed_ILS(row, rate=None): """ input: e.g. row =('row1',[1,3400,'hello']) return: newrow = ('row2',[34,5400,'embeded']) """ items = row[1] capacity, chosen = int(items[4]), int(items[7]) if chosen == 0: return None try: tmpf_src = tempfile.NamedTemporaryFile(suffix='.jpg', mode='w+b') tmpf_src.write(items[0]) tmpf_src.seek(0) tmpf_dst = tempfile.NamedTemporaryFile(suffix='.jpg', mode='w+b') steger = F5.F5(sample_key, 1) if rate == None: embed_rate = steger.embed_raw_data(tmpf_src.name, os.path.join(package_dir, '../res/toembed'), tmpf_dst.name) else: assert (rate >= 0 and rate < 1) # print capacity hidden = np.random.bytes(int(int(capacity) * rate) / 8) embed_rate = steger.embed_raw_data(tmpf_src.name, hidden, tmpf_dst.name, frommem=True) tmpf_dst.seek(0) raw = tmpf_dst.read() index = md5(raw).hexdigest() return (index + '.jpg', [raw] + rddinfo_ILS(raw, embed_rate, 0, 1)) except Exception as e: print e raise finally: tmpf_src.close() tmpf_dst.close() def rddembed_ILS_EXT(row, rate=None): """ input: e.g. row =('row1',[1,3400,'hello']) return: newrow = ('row2',[34,5400,'embeded']) or NULL [row,newrow] """ items = row[1] capacity, chosen = int(items[4]), int(items[7]) if chosen == 0: return [row] try: tmpf_src = tempfile.NamedTemporaryFile(suffix='.jpg', mode='w+b') tmpf_src.write(items[0]) tmpf_src.seek(0) tmpf_dst = tempfile.NamedTemporaryFile(suffix='.jpg', mode='w+b') steger = F5.F5(sample_key, 2) if rate == None: embed_rate = steger.embed_raw_data(tmpf_src.name, os.path.join(package_dir, '../res/toembed'), tmpf_dst.name) else: assert (rate >= 0 and rate < 1) # print capacity hidden = np.random.bytes(int(int(capacity) * rate) / 8) embed_rate = steger.embed_raw_data(tmpf_src.name, hidden, tmpf_dst.name, frommem=True) tmpf_dst.seek(0) raw = tmpf_dst.read() index = md5(raw).hexdigest() return [row, (index + '.jpg', [raw] + rddinfo_ILS(raw, embed_rate, 0, 1))] except Exception as e: print e raise finally: tmpf_src.close() tmpf_dst.close() def _get_feat(image, feattype='ibd', **kwargs): if feattype == 'ibd': feater = IntraBlockDiff.FeatIntraBlockDiff() else: raise Exception("Unknown feature type!") desc = feater.feat(image) return desc def rddfeat_ILS(items, feattype='ibd', **kwargs): try: tmpf_src = tempfile.NamedTemporaryFile(suffix='.jpg', mode='w+b') tmpf_src.write(items[0]) tmpf_src.seek(0) desc = json.dumps(_get_feat(tmpf_src.name, feattype=feattype).tolist()) # print 'desccccccccccccccccccc',desc return items + [desc] except Exception as e: print e raise finally: tmpf_src.close() def rddanalysis_ILS(items, feattype='ibd', **kwargs): head = np.fromstring(items[0][:2], dtype=np.uint8) if not np.array_equal(head, [255, 216]): return items + [0] try: tmpf_src = tempfile.NamedTemporaryFile(suffix='.jpg', mode='w+b') tmpf_src.write(items[0]) tmpf_src.seek(0) desc = _get_feat(tmpf_src.name, feattype=feattype) tag = classifier.predict(desc.ravel())[0] # print 'desccccccccccccccccccc',desc return items + [tag] except Exception as e: print e raise finally: tmpf_src.close() # return items + classifier.predict(items[-1]) def format_out(row, cols, withdata=False): """ input: e.g. row =('row1',[1,3400,'hello']) cols = [['cf_info', 'id'], ['cf_info', 'size'], ['cf_tag', 'desc']] return: [('row1',['row1', 'cf_info', 'id', '1']),('row1',['row1', 'cf_info', 'size', '3400']),('row1',['row1', 'cf_tag', 'desc', 'hello'])] """ puts = [] key = row[0] # if key == '04650c488a2b163ca8a1f52da6022f03.jpg': # print row if not withdata: for data, col in zip(row[1][1:], cols[1:]): puts.append((key, [key] + col + [str(data)])) else: for data, col in zip(row[1], cols): puts.append((key, [key] + col + [str(data)])) return puts