__author__ = 'chunk' from ..common import * from ..mdata import MSR, CV, ILSVRC, ILSVRC_S from ..mmodel import SVM from ..mfeat import HOG from sklearn import cross_validation timer = Timer() def test_SVM_CV(): timer.mark() dcv = CV.DataCV() X, Y = dcv.load_data(mode='local') # 90.468586s -> 5.392520s # X, Y = dcv.load_data(mode='hbase') # 21.682754s # X, Y = dcv.load_data(mode='spark') # 29.549597s timer.report() timer.mark() # msvm = SVM.ModelSVM(toolset='sklearn') # 3.030380s # msvm = SVM.ModelSVM(toolset='opencv') # 8.939880s # msvm = SVM.ModelSVM(toolset='libsvm') # 185.524023s msvm = SVM.ModelSVM(toolset='spark') msvm.train(X, Y) timer.report() timer.mark() for path, subdirs, files in os.walk('data/467/'): for name in files: imgpath = os.path.join(path, name) feat = dcv.get_feat(imgpath, 'hog') print name, msvm.predict(feat) timer.report() timer.mark() print msvm.test(X, Y) # 0.948892561983 for svm_cv, 0.989024793388 for svm_sk, 0.9900826446280992 for svm_lib timer.report() # 27.421949s for svm_lib def test_SVM_ILSVRC(): timer.mark() dil = ILSVRC.DataILSVRC(base_dir='/data/hadoop/ImageNet/ILSVRC/ILSVRC2013_DET_val', category='Test.0.2') X, Y = dil.load_data(mode='local') # # X, Y = dil.load_data(mode='hbase') # # X, Y = dil.load_data(mode='spark') # X_train, X_test, Y_train, Y_test = cross_validation.train_test_split(X, Y, test_size=0.4, random_state=0) print np.array(Y).shape, np.array(X).shape print np.array(X_train).shape, np.array(Y_train).shape print np.array(X_test).shape, np.array(Y_test).shape timer.report() timer.mark() msvm = SVM.ModelSVM(toolset='sklearn') # 4.884247s 0.777853030816 # msvm = SVM.ModelSVM(toolset='opencv') # # msvm = SVM.ModelSVM(toolset='libsvm') # # msvm = SVM.ModelSVM(toolset='spark') msvm.train(X_train, Y_train) timer.report() timer.mark() print msvm.test(X_test, Y_test) # timer.report() # # timer.mark() # print 'or like this:' # scores = cross_validation.cross_val_score(msvm.model, X, Y) # print scores # timer.report() def test_SVM_ILSVRC_HBASE(): timer.mark() # dil = ILSVRC.DataILSVRC(base_dir='ILSVRC2013_DET_val', category='Train_3') # X, Y = dil.load_data(mode='hbase') # pass dils = ILSVRC_S.DataILSVRC_S(base='ILSVRC2013_DET_val', category='Train_3') X, Y = dils.load_data(mode='hbase') # pass X_train, X_test, Y_train, Y_test = cross_validation.train_test_split(X, Y, test_size=0.4, random_state=0) print Y print np.array(Y).shape, np.array(X).shape print np.array(X_train).shape, np.array(Y_train).shape print np.array(X_test).shape, np.array(Y_test).shape timer.report() timer.mark() msvm = SVM.ModelSVM(toolset='sklearn') # 4.884247s 0.777853030816 # msvm = SVM.ModelSVM(toolset='opencv') # # msvm = SVM.ModelSVM(toolset='libsvm') # # msvm = SVM.ModelSVM(toolset='spark') msvm.train(X_train, Y_train) timer.report() timer.mark() print msvm.test(X_test, Y_test) # timer.report() # # timer.mark() # print 'or like this:' # scores = cross_validation.cross_val_score(msvm.model, X, Y) # print scores # timer.report() def test_SVM_ILSVRC_SPARK(): timer.mark() dils = ILSVRC_S.DataILSVRC_S(base='ILSVRC2013_DET_val', category='Train_3') rdd_dataset = dils.load_data(mode='spark') # pass timer.report() timer.mark() # msvm = SVM.ModelSVM(toolset='sklearn') # # msvm = SVM.ModelSVM(toolset='opencv') # # msvm = SVM.ModelSVM(toolset='libsvm') # msvm = SVM.ModelSVM(toolset='spark', sc=dils.sparker) msvm.train(rdd_dataset) timer.report() dataset = rdd_dataset.collect() length = len(dataset) X_test, Y_test = [dataset[i].features for i in range(length)], [dataset[i].label for i in range(length)] timer.mark() print msvm.test(dils.sparker.sc.parallelize(X_test), Y_test) # timer.report() # def test_SVM_ILSVRC_S(): # test_SVM_ILSVRC_HBASE() test_SVM_ILSVRC_SPARK() if __name__ == '__main__': # test_SVM_CV() test_SVM_ILSVRC() print 'helllo'