e3e7e73a
Chunk
spider standalone...
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
|
'''
SVM Model.
@author: chunk
chunkplus@gmail.com
2014 Dec
'''
import os, sys
# from ...mfeat import *
from ...mmodel import *
# from ...mmodel.svm.svmutil import *
from ...common import *
import numpy as np
import csv
import json
import pickle
# import cv2
from sklearn import svm
package_dir = os.path.dirname(os.path.abspath(__file__))
dict_Train = {}
dict_databuf = {}
dict_tagbuf = {}
dict_featbuf = {}
class ModelSVM(ModelBase):
def __init__(self, toolset='sklearn', sc=None):
ModelBase.__init__(self)
self.toolset = toolset
self.sparker = sc
def _train_sklearn(self, X, Y):
|
e3e7e73a
Chunk
spider standalone...
|
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
|
clf.fit(X, Y)
with open(os.path.join(package_dir, '../..', 'res/svm_sklearn.model'), 'wb') as modelfile:
model = pickle.dump(clf, modelfile)
self.model = clf
return clf
def _predict_sklearn(self, feat, model=None):
"""N.B. sklearn.svm.base.predict :
Perform classification on samples in X.
Parameters
----------
X : {array-like, sparse matrix}, shape = [n_samples, n_features]
Returns
-------
y_pred : array, shape = [n_samples]
Class labels for samples in X.
"""
if model is None:
if self.model != None:
model = self.model
|
e3e7e73a
Chunk
spider standalone...
|
63
64
65
66
67
68
69
70
71
72
|
print 'loading model ...'
with open(os.path.join(package_dir, '../..', 'res/svm_sklearn.model'), 'rb') as modelfile:
model = pickle.load(modelfile)
return model.predict(feat)
def __test_sklearn(self, X, Y, model=None):
if model is None:
if self.model != None:
model = self.model
|
e3e7e73a
Chunk
spider standalone...
|
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
|
print 'loading model ...'
with open(os.path.join(package_dir, '../..', 'res/svm_sklearn.model'), 'rb') as modelfile:
model = pickle.load(modelfile)
result_Y = np.array(self._predict_sklearn(X, model))
fp = 0
tp = 0
sum = np.sum(np.array(Y) == 1)
positive, negative = np.sum(np.array(Y) == 1), np.sum(np.array(Y) == 0)
print positive, negative
for i in range(len(Y)):
if Y[i] == 0 and result_Y[i] == 1:
fp += 1
elif Y[i] == 1 and result_Y[i] == 1:
tp += 1
return float(fp) / negative, float(tp) / positive, np.mean(Y == result_Y)
def _test_sklearn(self, X, Y, model=None):
if model is None:
if self.model != None:
model = self.model
|
e3e7e73a
Chunk
spider standalone...
|
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
|
print 'loading model ...'
with open(os.path.join(package_dir, '../..', 'res/svm_sklearn.model'), 'rb') as modelfile:
model = pickle.load(modelfile)
return model.score(X, Y)
# def _train_libsvm(self, X, Y):
# X, Y = list(X), list(Y)
# # X, Y = [float(i) for i in X], [float(i) for i in Y]
# prob = svm_problem(Y, X)
# param = svm_parameter('-t 0 -c 4 -b 1 -h 0')
# # param = svm_parameter(kernel_type=LINEAR, C=10)
# m = svm_train(prob, param)
# svm_save_model(os.path.join(package_dir, '../..', 'res/svm_libsvm.model'), m)
#
# self.model = m
#
# return m
#
# def _predict_libsvm(self, feat, model=None):
# if model is None:
# if self.model != None:
# model = self.model
# else:
# print 'loading model ...'
# model = svm_load_model(os.path.join(package_dir, '../..', 'res/svm_libsvm.model'))
#
# feat = [list(feat)]
# # print len(feat),[0] * len(feat)
# label, _, _ = svm_predict([0] * len(feat), feat, model)
# return label
#
#
# def _test_libsvm(self, X, Y, model=None):
# if model is None:
# if self.model != None:
# model = self.model
# else:
# print 'loading model ...'
# model = svm_load_model(os.path.join(package_dir, '../..', 'res/svm_libsvm.model'))
#
# X, Y = list(X), list(Y)
# p_labs, p_acc, p_vals = svm_predict(Y, X, model)
# # ACC, MSE, SCC = evaluations(Y, p_labs)
#
# return p_acc
# def _train_opencv(self, X, Y):
# svm_params = dict(kernel_type=cv2.SVM_LINEAR,
# svm_type=cv2.SVM_C_SVC,
# C=4)
#
# X, Y = np.array(X, dtype=np.float32), np.array(Y, dtype=np.float32)
#
# svm = cv2.SVM()
# svm.train(X, Y, params=svm_params)
# svm.save(os.path.join(package_dir, '../..', 'res/svm_opencv.model'))
#
# self.model = svm
#
# return svm
#
|