Blame view

mjpeg/__init__.py 14.6 KB
1d19f0e7   Chunk   staged.
1
2
3
4
## -*- coding: utf-8 -*-

from libmjsteg import Jsteg

d3e050d6   Chunk   staged.
5
__all__ = ['Jpeg', 'colorMap', 'diffblock', 'diffblocks']
1d19f0e7   Chunk   staged.
6
7
8
9
10
11
12

# We need standard components from :mod:`numpy`, and some auxiliary
# functions from submodules.
#
# ::

import numpy.random as rnd
84648488   Chunk   reverted.
13
14
15
from numpy import shape
import numpy as np

1d19f0e7   Chunk   staged.
16
17
18
import base
from dct import bdct, ibdct
from compress import *
2c2d57c7   Chunk   ILSVRC datapath h...
19

1d19f0e7   Chunk   staged.
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
# The colour codes are defined in the JPEG standard.  We store
# them here for easy reference by name::

colorCode = {
    "GRAYSCALE": 1,
    "RGB": 2,
    "YCbCr": 3,
    "CMYK": 4,
    "YCCK": 5
}

colorParam = ['Y', 'Cb', 'Cr']
colorMap = {'Y': 0, 'Cb': 1, 'Cr': 2}

# The JPEG class
# ==============

class Jpeg(Jsteg):
    """
      The jpeg (derived from jpegObject) allows the user to extract
      a sequence of pseudo-randomly ordered jpeg coefficients for
      watermarking/steganography, and reinsert them.
    """

    def __init__(self, file=None, key=None, rndkey=True, image=None,
                 verbosity=1, **kw):
        """
          The constructor will return a new Object with data from the given file.

          The key is used to determine the order of the jpeg coefficients.
          If no key is given, a random key is extracted using
          random.SystemRandom().
        """
        if image != None:
            raise NotImplementedError, "Compression is not yet implemented"
        try:
e3e7e73a   Chunk   spider standalone...
56
57
58
59
            Jsteg.__init__(self, file, **kw)
        except:
            raise
        self.verbosity = verbosity
1d19f0e7   Chunk   staged.
60
61
        if verbosity > 0:
            print "[Jpeg] %s (%ix%i)" % (self.filename, self.image_width, self.image_height)
d0be60e7   Chunk   jpeg update.
62
        if key != None:
1d19f0e7   Chunk   staged.
63
64
65
66
67
68
69
            self.key = key
        elif rndkey:
            self.key = [base.sysrnd.getrandbits(16) for x in range(16)]
        else:
            self.key = None


84648488   Chunk   reverted.
70
    def getkey(self):
1d19f0e7   Chunk   staged.
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
        """Return the key used to shuffle the coefficients."""
        return self.key

    # 1D Signal Representations
    # -------------------------

    def rawsignal(self, mask=base.acMaskBlock, channel="All"):
        """
          Return a 1D array of AC coefficients.
          (Most applications should use getsignal() rather than rawsignal().)
        """
        R = []
        if channel == "All":
            for X in self.coef_arrays:
                (h, w) = X.shape
                A = base.acMask(h, w, mask)
                R = np.hstack([R, X[A]])
        else:
            cID = self.getCompID(channel)
            X = self.coef_arrays[cID]
            (h, w) = X.shape
            A = base.acMask(h, w, mask)
            R = np.hstack([R, X[A]])
        return R

    def getsignal(self, mask=base.acMaskBlock, channel="All"):
        """Return a 1D array of AC coefficients in random order."""
        R = self.rawsignal(mask, channel)
        if self.key == None:
            return R
        else:
            rnd.seed(self.key)
            return R[rnd.permutation(len(R))]

    def setsignal(self, R0, mask=base.acMaskBlock, channel="All"):
        """Reinserts AC coefficients from getitem in the correct positions."""
        if self.key != None:
            rnd.seed(self.key)
            fst = 0
            P = rnd.permutation(len(R0))
            R = np.array(R0)
            R[P] = R0
        else:
            R = R0
        if channel == "All":
            for cID in range(3):
                X = self.coef_arrays[cID]
                s = X.size * 63 / 64
                (h, w) = X.shape
                X[base.acMask(h, w, mask)] = R[fst:(fst + s)]
                fst += s

                # Jset
                blocks = self.getCoefBlocks(channel=colorParam[cID])
                xmax, ymax = self.Jgetcompdim(cID)
                for y in range(ymax):
                    for x in range(xmax):
                        block = blocks[y, x]
                        self.Jsetblock(x, y, cID, bytearray(block.astype(np.int16)))

        else:
            cID = self.getCompID(channel)
            X = self.coef_arrays[cID]
            s = X.size * 63 / 64
            (h, w) = X.shape
            X[base.acMask(h, w, mask)] = R[fst:(fst + s)]
            fst += s

            # Jset
            blocks = self.getCoefBlocks(channel)
            xmax, ymax = self.Jgetcompdim(cID)
            for y in range(ymax):
                for x in range(xmax):
                    block = blocks[y, x]
                    self.Jsetblock(x, y, cID, bytearray(block.astype(np.int16)))

        assert len(R) == fst


84648488   Chunk   reverted.
150
    # Histogram and Image Statistics
1d19f0e7   Chunk   staged.
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
    # ------------------------------

    def abshist(self, mask=base.acMaskBlock, T=8):
        """
          Make a histogram of absolute values for a signal.
        """
        A = abs(self.rawsignal(mask)).tolist()
        L = len(A)
        D = {}
        C = 0
        for i in range(T + 1):
            D[i] = A.count(i)
            C += D[i]
        D["high"] = L - C
        D["total"] = L
        return D

    def hist(self, mask=base.acMaskBlock, T=8):
        """
          Make a histogram of the jpeg coefficients.
          The mask is a boolean 8x8 matrix indicating the
          frequencies to be included.  This defaults to the
          AC coefficients.
        """
        A = self.rawsignal(mask).tolist()
        E = [-np.inf] + [i for i in range(-T, T + 2)] + [np.inf]
        return np.histogram(A, E)


    def nzcount(self, *a, **kw):
        """Number of non-zero AC coefficients.

          Arguments are passed to rawsignal(), so a non-default mask could
          be specified to get other coefficients than the 63 AC coefficients.
        """
        R = list(self.rawsignal(*a, **kw))
        return len(R) - R.count(0)

    # Access to JPEG Image Data
    # -------------------------

    def getCompID(self, channel):
        """
          Get the index of the given colour channel.
        """
        # How do we adress different channels?
        colourSpace = self.jpeg_color_space;
        if colourSpace == colorCode["GRAYSCALE"]:
            if channel == "Y":
                return 0
            elif channel == None:
                return 0
            else:
                raise Exception, "Invalid colour space designator"
        elif colourSpace == colorCode["YCbCr"]:
            if channel == "Y":
                return 0
            elif channel == "Cb":
                return 1
            elif channel == "Cr":
                return 2
            else:
                raise Exception, "Invalid colour space designator"
        raise NotImplementedError, "Only YCbCr and Grayscale are supported."

    def getQMatrix(self, channel):
        """
          Return the quantisation matrix for the given colour channel.
        """
        cID = self.getCompID(channel)
        return self.quant_tables[self.comp_info[cID]["quant_tbl_no"]]

    def getCoefMatrix(self, channel="Y"):
        """
          This method returns the coefficient matrix for the given
          colour channel (as a matrix).
        """
        cID = self.getCompID(channel)
        return self.coef_arrays[cID]

    def setCoefMatrix(self, matrix, channel="Y"):
        v, h = self.getCoefMatrix(channel).shape
        assert matrix.shape == (v, h), "matrix is expected of size (%d,%d)" % (v, h)

        cID = self.getCompID(channel)
        self.coef_arrays[cID] = matrix

        blocks = self.getCoefBlocks(channel)
        xmax, ymax = self.Jgetcompdim(cID)
        for y in range(ymax):
            for x in range(xmax):
                block = blocks[y, x]
                self.Jsetblock(x, y, cID, bytearray(block.astype(np.int16)))

    def getCoefBlocks(self, channel="Y"):
        """
          This method returns the coefficient matrix for the given
          colour channel (as a 4-D tensor: (v,h,row,col)).
        """
        if channel == "All":
            return [
                np.array([np.hsplit(arr, arr.shape[1] / 8) for arr in np.vsplit(compMat, compMat.shape[0] / 8)]) for
                compMat in
                self.coef_arrays]

        compMat = self.getCoefMatrix(channel)
        return np.array([np.hsplit(arr, arr.shape[1] / 8) for arr in np.vsplit(compMat, compMat.shape[0] / 8)])

    def getCoefBlock(self, channel="Y", loc=(0, 0)):
        """
          This method returns the coefficient matrix for the given
          colour channel (as a 4-D tensor: (v,h,row,col)).
9ff70cf4   Chunk   capacity engeneer...
263
        """
84648488   Chunk   reverted.
264
        return self.getCoefBlocks(channel)[loc]
9ff70cf4   Chunk   capacity engeneer...
265
266


1d19f0e7   Chunk   staged.
267
    def setCoefBlock(self, block, channel="Y", loc=(0, 0)):
d0be60e7   Chunk   jpeg update.
268
        assert block.shape == (8, 8), "block is expected of size (8,8)"
84648488   Chunk   reverted.
269
        cID = self.getCompID(channel)
1d19f0e7   Chunk   staged.
270
271
272
273
274
275
276
277
        v, h = loc[0] * 8, loc[1] * 8
        self.coef_arrays[cID][v:v + 8, h:h + 8] = block

        self.Jsetblock(loc[1], loc[0], cID, bytearray(block.astype(np.int16)))

    def setCoefBlocks(self, blocks, channel="Y"):
        assert blocks.shape[-2:] == (8, 8), "block is expected of size (8,8)"
        cID = self.getCompID(channel)
84648488   Chunk   reverted.
278

1d19f0e7   Chunk   staged.
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
        vmax, hmax = blocks.shape[:2]
        for i in range(vmax):
            for j in range(hmax):
                v, h = i * 8, j * 8
                self.coef_arrays[cID][v:v + 8, h:h + 8] = blocks[i, j]
                self.Jsetblock(j, i, cID, bytearray(blocks[i, j].astype(np.int16)))

    def getSize(self):
        return self.image_width, self.image_height

    def getCapacity(self, channel="Y"):
        blocks = self.rawsignal(channel=channel)
        return np.sum(blocks != 0)

        # blocks = self.getCoefBlocks(channel)
        # capacity = 0
        # if channel == "All":
        #     for subblocks in blocks:
        #         capacity += (np.sum(subblocks != 0) - np.size(subblocks) / 64)
d3e050d6   Chunk   staged.
298
299
300
        # else:
        #     capacity = (np.sum(blocks != 0) - np.size(blocks) / 64)
        # return capacity
9ff70cf4   Chunk   capacity engeneer...
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315

        # return (np.sum(blocks[0] != 0) - np.size(blocks[0]) / 64) + (np.sum(blocks[1] != 0) - np.size(
        # blocks[1]) / 64) / 4 + (np.sum(blocks[2] != 0) - np.size(blocks[2]) / 64) / 4
        # return np.sum(np.array(self.coef_arrays)!=0) - np.size(self.coef_arrays) / 64


    def getQuality(self):
        """
        Qaulity rating algorithm from ImageMagick.

            e.g.
            find ./ -name "*.jpg" | xargs -i sh -c "echo -n {} && identify -quiet -verbose {} |grep -E 'Quality' "

        Ref - http://stackoverflow.com/questions/2024947/is-it-possible-to-tell-the-quality-level-of-a-jpeg,http://www.imagemagick.org/discourse-server/viewtopic.php?f=1&t=20235
        """
d0be60e7   Chunk   jpeg update.
316
317
        sum0 = np.sum(self.quant_tables[0])
        sum1 = np.sum(self.quant_tables[1])
84648488   Chunk   reverted.
318
        quality = None
d3e050d6   Chunk   staged.
319
320
321
322
323
324
325
326
327

        if sum0 != None:
            if sum1 != None:
                sum = sum0 + sum1
                qvalue = self.quant_tables[0].ravel()[2] + self.quant_tables[0].ravel()[53] + \
                         self.quant_tables[1].ravel()[0] + self.quant_tables[1].ravel()[-1]
                hashtable = bi_hash
                sumtable = bi_sum
            else:
5d5e4962   Chunk   staged.
328
329
                sum = sum0
                qvalue = self.quant_tables[0].ravel()[2] + self.quant_tables[0].ravel()[53]
d3e050d6   Chunk   staged.
330
331
332
333
334
                hashtable = single_hash
                sumtable = single_sum
        else:
            raise Exception("Quantization Tables Illegal")
            return None
d0be60e7   Chunk   jpeg update.
335
336

        for i in range(100):
d3e050d6   Chunk   staged.
337
338
339
340
            if qvalue >= hashtable[i] or sum >= sumtable[i]:
                break
        quality = i + 1

5d5e4962   Chunk   staged.
341
        return quality
d3e050d6   Chunk   staged.
342
343
344
345
346
347
348
349
350
351
352
353
354


    # Decompression
    # -------------

    def getSpatial(self, channel="Y"):
        """
          This method returns one decompressed colour channel as a matrix.
          The appropriate JPEG coefficient matrix is dequantised
          (using the quantisation tables held by the object) and
          inverse DCT transformed.
        """
        X = self.getCoefMatrix(channel)
84648488   Chunk   reverted.
355
        Q = self.getQMatrix(channel)
1d19f0e7   Chunk   staged.
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
        (M, N) = shape(X)
        assert M % 8 == 0, "Image size not divisible by 8"
        assert N % 8 == 0, "Image size not divisible by 8"
        D = X * base.repmat(Q, (M / 8, N / 8))
        S = ibdct(D)
        # assert max( abs(S).flatten() ) <=128, "Image colours out of range"
        return (S + 128 ).astype(np.uint8)

    # Complete, general decompression is not yet implemented::

    def getimage(self):
        """
          Decompress the image and a PIL Image object.
        """

        # Probably better to use a numpy image/array.

        raise NotImplementedError, "Decompression is not yet implemented"
84648488   Chunk   reverted.
374

1d19f0e7   Chunk   staged.
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
        # We miss the routines for upsampling and adjusting the size

        L = len(self.coef_arrays)
        im = []
        for i in range(L):
            C = self.coef_arrays[i]
            if C != None:
                Q = self.quant_tables[self.comp_info[i]["quant_tbl_no"]]
                im.append(ibdct(dequantise(C, Q)))
        return Image.fromarray(im)


    # Calibration
    # -----------

    def getCalibrated(self, channel="Y", mode="all"):
        """
          Return a calibrated coefficient matrix for the given channel.
          Channel may be "Y", "Cb", or "Cr" for YCbCr format.
          For Grayscale images, it may be None or "Y".
        """
        S = self.getSpatial(channel)
        (M, N) = shape(S)
84648488   Chunk   reverted.
398
        assert M % 8 == 0, "Image size not divisible by 8"
1d19f0e7   Chunk   staged.
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
        assert N % 8 == 0, "Image size not divisible by 8"
        if mode == "col":
            S1 = S[:, 4:(N - 4)]
            cShape = ( M / 8, N / 8 - 1 )
        else:
            S1 = S[4:(M - 4), 4:(N - 4)]
            cShape = ( (M - 1) / 8, (N - 1) / 8 )
        D = bdct(S1 - 128)
        X = D / base.repmat(self.getQMatrix(channel), cShape)
        return np.round(X)

    def calibrate(self, *a, **kw):
        assert len(self.coef_arrays) == 1
        self.coef_arrays[0] = self.getCalibrated(*a, **kw)

84648488   Chunk   reverted.
414
    def getCalSpatial(self, channel="Y"):
1d19f0e7   Chunk   staged.
415
416
        """
          Return the decompressed, calibrated, grayscale image.
84648488   Chunk   reverted.
417
          A different colour channel can be selected with the channel
1d19f0e7   Chunk   staged.
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
          argument.
        """

        # We calibrate the image, obtaining a JPEG matrix.

        C = self.getCalibrated(channel)

        # The rest is straight forward JPEG decompression.

        (M, N) = shape(C)
        cShape = (M / 8, N / 8)
        D = C * base.repmat(self.getQMatrix(channel), cShape)
        S = np.round(ibdct(D) + 128)
        return S.astype(np.uint8)


def diffblock(c1, c2):
    diff = False
    if np.array_equal(c1, c2):
        print("blocks match")
    else:
        print("blocks not match")
        diff = True

    return diff


def diffblocks(a, b):
    diff = False
    cnt = 0
    for comp in range(a.image_components):
        xmax, ymax = a.Jgetcompdim(comp)
        for y in range(ymax):
            for x in range(xmax):
                if a.Jgetblock(x, y, comp) != b.Jgetblock(x, y, comp):
                    print("blocks({},{}) in component {} not match".format(y, x, comp))
                    diff = True
                    cnt += 1
    return diff, cnt
84648488   Chunk   reverted.