Blame view

mdata/ILSVRC_S.py 23.4 KB
ea1eb31a   Chunk   spark is privileg...
1
2
3
__author__ = 'chunk'

from . import *
84648488   Chunk   reverted.
4
from ..mfeat import IntraBlockDiff
ea1eb31a   Chunk   spark is privileg...
5
from ..mspark import rdd, SC
02528074   Chunk   staged.
6
from pyspark.mllib.regression import LabeledPoint
ea1eb31a   Chunk   spark is privileg...
7
8
9
from ..common import *

import os, sys
ea1eb31a   Chunk   spark is privileg...
10
11
from hashlib import md5
import csv
ea1eb31a   Chunk   spark is privileg...
12
import json
ea1eb31a   Chunk   spark is privileg...
13
14
15
16
17
18
19
import happybase

from ..mjpeg import *
from ..msteg import *
from ..msteg.steganography import LSB, F3, F4, F5

import numpy as np
ea1eb31a   Chunk   spark is privileg...
20
21
from scipy import stats

f25fd27c   Chunk   staged. 'hbase' m...
22
import tempfile
ea1eb31a   Chunk   spark is privileg...
23
24
25
26
27
28

np.random.seed(sum(map(ord, "whoami")))

package_dir = os.path.dirname(os.path.abspath(__file__))


24768a99   Chunk   mode 'hbase' fini...
29
class DataILSVRC_S(DataDumperBase):
f25fd27c   Chunk   staged. 'hbase' m...
30
31
32
33
34
35
36
37
38
    """
    This module is specially for ILSVRC data processing under spark & hbase.

    We posit that the DB(e.g. HBase) has only the images data with md5 name as id.
    The task is to gennerate info(size,capacity,quality,etc.) and class & chosen tags, and then to perform embedding and finally to calcculate ibd features.

    Each step includes reading from & writing to Hbase (though PC).
    And each step must have a 'spark' mode option, which means that the operation is performed by spark with reading & wrting through RDDs.

35cf2e3a   Chunk   staged.
39
    copyright(c) 2015 chunkplus@gmail.com
f25fd27c   Chunk   staged. 'hbase' m...
40
41
    """

4f36b116   Chunk   staged.
42
    def __init__(self, base='ILSVRC2013_DET_val', category='Train_1', host='HPC-server', tablename=None):
1dc7c44b   Chunk   crawler-hbase-spa...
43
        DataDumperBase.__init__(self, base, category)
ea1eb31a   Chunk   spark is privileg...
44

1dc7c44b   Chunk   crawler-hbase-spa...
45
        self.base = base
ea1eb31a   Chunk   spark is privileg...
46
        self.category = category
ea1eb31a   Chunk   spark is privileg...
47
48

        self.dict_data = {}
0fbc087e   Chunk   staged.
49
        self.rdd_data = None
ea1eb31a   Chunk   spark is privileg...
50

4f36b116   Chunk   staged.
51
52
53
54
55
56
        if tablename is None:
            self.table_name = self.base.strip('/').split('/')[-1]
            if self.category != None:
                self.table_name += ('-' + self.category)
        else:
            self.table_name = tablename
1dc7c44b   Chunk   crawler-hbase-spa...
57

f4fb4381   Chunk   staged.
58
59
        self.host = host
        self.master = 'spark://%s:7077' % self.host
ea1eb31a   Chunk   spark is privileg...
60
        self.appname = 'ImageILSVRC-S'
0fbc087e   Chunk   staged.
61
        self.sparker = SC.Sparker(host=self.host, appname=self.appname,
ea1eb31a   Chunk   spark is privileg...
62
                                  master=self.master)
24768a99   Chunk   mode 'hbase' fini...
63

4f36b116   Chunk   staged.
64
65
        self.steger = F5.F5(sample_key, 1)

ea1eb31a   Chunk   spark is privileg...
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
    def get_table(self):
        print "getting table [%s]..." % self.table_name

        if self.table != None:
            return self.table

        if self.connection is None:
            c = happybase.Connection(host=self.host)
            self.connection = c

        tables = self.connection.tables()
        if self.table_name not in tables:
            families = {'cf_pic': dict(),
                        'cf_info': dict(max_versions=10),
                        'cf_tag': dict(),
                        'cf_feat': dict(),
                        }
            self.connection.create_table(name=self.table_name, families=families)

        table = self.connection.table(name=self.table_name)

        self.table = table
d47ae6ce   Chunk   staged.
88

f1fa5b17   Chunk   review & streaming.
89
        return table
d47ae6ce   Chunk   staged.
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107

    def delete_table(self, table_name=None, disable=True):
        print "deleting table..."
        if table_name == None:
            table_name = self.table_name

        if self.connection is None:
            c = happybase.Connection(host=self.host)
            self.connection = c

        tables = self.connection.tables()
        if table_name not in tables:
            return False
        else:
            try:
                self.connection.delete_table(table_name, disable)
            except:
                print 'Exception when deleting table.'
f25fd27c   Chunk   staged. 'hbase' m...
108
109
110
111
112
113
114
                raise
        return True

    def _get_info(self, img, info_rate=None, tag_chosen=None, tag_class=None):
        """
        Tempfile is our friend. (?)
        """
1c2a3fa0   Chunk   staged.
115
        info_rate = info_rate if info_rate != None else 0.0
f25fd27c   Chunk   staged. 'hbase' m...
116
117
118
        tag_chosen = tag_chosen if tag_chosen != None else stats.bernoulli.rvs(0.8)
        tag_class = tag_class if tag_class != None else 0

24768a99   Chunk   mode 'hbase' fini...
119
        try:
f25fd27c   Chunk   staged. 'hbase' m...
120
            tmpf = tempfile.NamedTemporaryFile(suffix='.jpg', mode='w+b')
1c2a3fa0   Chunk   staged.
121
122
123
124
125
126
127
128
129
130
            tmpf.write(img)
            tmpf.seek(0)
            im = Jpeg(tmpf.name, key=sample_key)
            info = [
                im.image_width,
                im.image_height,
                im.image_width * im.image_height,
                im.getCapacity(),
                im.getQuality(),
                info_rate,
f25fd27c   Chunk   staged. 'hbase' m...
131
132
133
134
135
136
137
                tag_chosen,
                tag_class
            ]
            return info
        except Exception as e:
            print e
        finally:
84648488   Chunk   reverted.
138
139
140
141
142
            tmpf.close()

    def _get_feat(self, image, feattype='ibd', **kwargs):
        # size = kwargs.get('size', (48, 48))
        #
f25fd27c   Chunk   staged. 'hbase' m...
143
144
145
        # if feattype == 'hog':
        # feater = HOG.FeatHOG(size=size)
        if feattype == 'ibd':
ea1eb31a   Chunk   spark is privileg...
146
            feater = IntraBlockDiff.FeatIntraBlockDiff()
f25fd27c   Chunk   staged. 'hbase' m...
147
        else:
ea1eb31a   Chunk   spark is privileg...
148
            raise Exception("Unknown feature type!")
f25fd27c   Chunk   staged. 'hbase' m...
149

ea1eb31a   Chunk   spark is privileg...
150
        desc = feater.feat(image)
84648488   Chunk   reverted.
151

1c2a3fa0   Chunk   staged.
152
        return desc
0fbc087e   Chunk   staged.
153
154
155
156
157
158


    def _rddparse_data(raw_row):
        """
        input: (u'key0',u'cf_feat:hog:[0.056273,...]--%--cf_pic:data:\ufffd\ufffd\...--%--cf_tag:hog:True')
        return: ([0.056273,...],1)
0fbc087e   Chunk   staged.
159

1c2a3fa0   Chunk   staged.
160
161
162
163
164
        In fact we can also use mapValues.
        """
        key = raw_row[0]
        # if key == '04650c488a2b163ca8a1f52da6022f03.jpg':
        # with open('/tmp/hhhh','wb') as f:
0fbc087e   Chunk   staged.
165
166
        # f.write(raw_row[1].decode('unicode-escape')).encode('latin-1')
        items = raw_row[1].decode('unicode-escape').encode('latin-1').split('--%--')
84648488   Chunk   reverted.
167
        data = items[0].split('cf_pic:data:')[-1]
1c2a3fa0   Chunk   staged.
168
        return (key, data)
0fbc087e   Chunk   staged.
169

1c2a3fa0   Chunk   staged.
170

84648488   Chunk   reverted.
171
    def _rddparse_all(raw_row):
0fbc087e   Chunk   staged.
172
173
        key = raw_row[0]
        items = raw_row[1].decode('unicode-escape').encode('latin-1').split('--%--')
84648488   Chunk   reverted.
174
        data = [items[0].split('cf_pic:data:')[-1]] + [json.loads(item.split(':')[-1]) for item in items[1:]]
0fbc087e   Chunk   staged.
175
176
177
178
179
180
181
182
183
        return (key, data)


    def _rdd_embed(self, row):
        """
        input:
            e.g. row =('row1',[1,3400,'hello'])
        return:
            newrow = ('row2',[34,5400,'embeded'])
1c2a3fa0   Chunk   staged.
184
        """
0fbc087e   Chunk   staged.
185
186
187
188
189
190
191
192
193
        items = row[1]
        capacity, rate, chosen = items[4], items[6], items[7]

        if chosen == 0:
            return None
        try:
            tmpf_src = tempfile.NamedTemporaryFile(suffix='.jpg', mode='w+b')
            tmpf_src.write(items[0])
            tmpf_src.seek(0)
84648488   Chunk   reverted.
194
            tmpf_dst = tempfile.NamedTemporaryFile(suffix='.jpg', mode='w+b')
0fbc087e   Chunk   staged.
195
196
197
198
199

            if rate == None:
                embed_rate = self.steger.embed_raw_data(tmpf_src.name, os.path.join(package_dir, '../res/toembed'),
                                                        tmpf_dst.name)
            else:
84648488   Chunk   reverted.
200
                assert (rate >= 0 and rate < 1)
0fbc087e   Chunk   staged.
201
202
203
204
205
206
207
208
209
210
211
212
213
214
                # print capacity
                hidden = np.random.bytes(int(int(capacity) * rate) / 8)
                embed_rate = self.steger.embed_raw_data(tmpf_src.name, hidden, tmpf_dst.name, frommem=True)

            tmpf_dst.seek(0)
            raw = tmpf_dst.read()
            index = md5(raw).hexdigest()

            return (index + '.jpg', [raw] + self._get_info(raw, embed_rate, 0, 1))

        except Exception as e:
            print e
            raise
        finally:
84648488   Chunk   reverted.
215
            tmpf_src.close()
1dc7c44b   Chunk   crawler-hbase-spa...
216
            tmpf_dst.close()
f25fd27c   Chunk   staged. 'hbase' m...
217
218
219


    def _extract_data(self, mode='hbase', writeback=False, withdata=True):
f1fa5b17   Chunk   review & streaming.
220
        """
f25fd27c   Chunk   staged. 'hbase' m...
221
222
223
224
225
        Get info barely out of image data.
        """
        print "extracting data..."
        if mode == 'hbase':
            if self.table == None:
24768a99   Chunk   mode 'hbase' fini...
226
227
                self.table = self.get_table()

f25fd27c   Chunk   staged. 'hbase' m...
228
229
230
231
232
233
234
235
236
237
238
            cols = ['cf_pic:data']
            for key, data in self.table.scan(columns=cols):
                data = data['cf_pic:data']
                self.dict_data[key] = [data] + self._get_info(data)

            if not writeback:
                return self.dict_data
            else:
                try:
                    with self.table.batch(batch_size=5000) as b:
                        for imgname, imginfo in self.dict_data.items():
1c2a3fa0   Chunk   staged.
239
240
241
242
243
244
245
246
                            b.put(imgname,
                                  {
                                      # 'cf_pic:data': imginfo[0],
                                      'cf_info:width': str(imginfo[1]),
                                      'cf_info:height': str(imginfo[2]),
                                      'cf_info:size': str(imginfo[3]),
                                      'cf_info:capacity': str(imginfo[4]),
                                      'cf_info:quality': str(imginfo[5]),
24768a99   Chunk   mode 'hbase' fini...
247
                                      'cf_info:rate': str(imginfo[6]),
f25fd27c   Chunk   staged. 'hbase' m...
248
249
250
251
252
                                      'cf_tag:chosen': str(imginfo[7]),
                                      'cf_tag:class': str(imginfo[8]),
                                  })
                except ValueError:
                    raise
02528074   Chunk   staged.
253
254


0bd44a28   Chunk   staged.
255
        elif mode == 'spark':
0fbc087e   Chunk   staged.
256
            if self.sparker == None:
1c2a3fa0   Chunk   staged.
257
258
259
260
261
262
263
264
265
266
267
                self.sparker = SC.Sparker(host=self.host, appname=self.appname,
                                          master=self.master)

            cols = [
                'cf_pic:data',
                'cf_info:width',
                'cf_info:height',
                'cf_info:size',
                'cf_info:capacity',
                'cf_info:quality',
                'cf_info:rate',
0fbc087e   Chunk   staged.
268
                'cf_tag:chosen',
3b4e250d   Chunk   staged.
269
                'cf_tag:class'
02528074   Chunk   staged.
270
            ]
1c2a3fa0   Chunk   staged.
271
272
273
274

            # # Debug
            # tmp_data = self.sparker.read_hbase(self.table_name, func=rdd.rddparse_data_ILS,
            # collect=False)
3b4e250d   Chunk   staged.
275
276
            # # tmp_data = tmp_data.mapValues(lambda data: [data] + rdd.rddinfo_ILS(data))
            # print tmp_data.collect()[0][1]
02528074   Chunk   staged.
277
            # return
0bd44a28   Chunk   staged.
278

1c2a3fa0   Chunk   staged.
279

3b4e250d   Chunk   staged.
280
            self.rdd_data = self.sparker.read_hbase(self.table_name, func=rdd.rddparse_data_ILS,
0fbc087e   Chunk   staged.
281
282
283
                                                    collect=False).mapValues(
                lambda data: [data] + rdd.rddinfo_ILS(data))

02528074   Chunk   staged.
284
            if not writeback:
0bd44a28   Chunk   staged.
285
                return self.rdd_data
e3e7e73a   Chunk   spider standalone...
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
            else:
                self.sparker.write_hbase(self.table_name, self.rdd_data, fromrdd=True, columns=cols,
                                         withdata=withdata)
        elif mode == 'analysis':
            if self.sparker == None:
                self.sparker = SC.Sparker(host=self.host, appname=self.appname,
                                          master=self.master)

            cols = [
                'cf_pic:data',
            ]

            # # Debug
            # tmp_data = self.sparker.read_hbase(self.table_name, func=rdd.rddparse_data_ILS,
            # collect=False)
            # # tmp_data = tmp_data.mapValues(lambda data: [data] + rdd.rddinfo_ILS(data))
            # print tmp_data.collect()[0][1]
            # return


            self.rdd_data = self.sparker.read_hbase(self.table_name, func=rdd.rddparse_data_ILS,
                                                    collect=False).mapValues(
                lambda data: [data])

            if not writeback:
                return self.rdd_data
0fbc087e   Chunk   staged.
312
            else:
ea1eb31a   Chunk   spark is privileg...
313
                self.sparker.write_hbase(self.table_name, self.rdd_data, fromrdd=True, columns=cols,
f25fd27c   Chunk   staged. 'hbase' m...
314
                                         withdata=withdata)
ea1eb31a   Chunk   spark is privileg...
315

84648488   Chunk   reverted.
316
317
        else:
            raise Exception("Unknown mode!")
f1fa5b17   Chunk   review & streaming.
318

f25fd27c   Chunk   staged. 'hbase' m...
319
320
321
322
323
324

    def _embed_data(self, mode='hbase', rate=None, readforward=False, writeback=False, withdata=True):
        print "embedding data..."
        if mode == 'hbase':
            if self.table == None:
                self.table = self.get_table()
1c2a3fa0   Chunk   staged.
325
326
327
328
329
330
331
332
333
334
335
336
337

            if readforward:
                self.dict_data = {}

                cols = [
                    'cf_pic:data',
                    'cf_info:width',
                    'cf_info:height',
                    'cf_info:size',
                    'cf_info:capacity',
                    'cf_info:quality',
                    'cf_info:rate',
                    'cf_tag:chosen',
24768a99   Chunk   mode 'hbase' fini...
338
339
                    'cf_tag:class'
                ]
f25fd27c   Chunk   staged. 'hbase' m...
340
341
342
343
344

                for key, data in self.table.scan(columns=cols):
                    data = [data[k] for k in cols]
                    self.dict_data[key] = data

1dc7c44b   Chunk   crawler-hbase-spa...
345
346
347
348
349
            dict_data_ext = {}

            for imgname, imgdata in self.dict_data.items():
                capacity, chosen = int(imgdata[4]), int(imgdata[7])

f25fd27c   Chunk   staged. 'hbase' m...
350
351
352
                if chosen == 0:
                    continue

24768a99   Chunk   mode 'hbase' fini...
353
                try:
f25fd27c   Chunk   staged. 'hbase' m...
354
355
356
                    tmpf_src = tempfile.NamedTemporaryFile(suffix='.jpg', mode='w+b')
                    tmpf_src.write(imgdata[0])
                    tmpf_src.seek(0)
0fbc087e   Chunk   staged.
357
                    tmpf_dst = tempfile.NamedTemporaryFile(suffix='.jpg', mode='w+b')
84648488   Chunk   reverted.
358

0fbc087e   Chunk   staged.
359
                    if rate == None:
f25fd27c   Chunk   staged. 'hbase' m...
360
361
362
                        embed_rate = self.steger.embed_raw_data(tmpf_src.name,
                                                                os.path.join(package_dir, '../res/toembed'),
                                                                tmpf_dst.name)
1dc7c44b   Chunk   crawler-hbase-spa...
363
                    else:
84648488   Chunk   reverted.
364
                        assert (rate >= 0 and rate < 1)
f25fd27c   Chunk   staged. 'hbase' m...
365
366
367
368
369
                        # print capacity
                        hidden = np.random.bytes(int(capacity * rate) / 8)
                        embed_rate = self.steger.embed_raw_data(tmpf_src.name, hidden, tmpf_dst.name, frommem=True)

                    tmpf_dst.seek(0)
ea1eb31a   Chunk   spark is privileg...
370
                    raw = tmpf_dst.read()
ea1eb31a   Chunk   spark is privileg...
371
                    index = md5(raw).hexdigest()
f25fd27c   Chunk   staged. 'hbase' m...
372
373
                    dict_data_ext[index + '.jpg'] = [raw] + self._get_info(raw, embed_rate, 0, 1)

24768a99   Chunk   mode 'hbase' fini...
374

f25fd27c   Chunk   staged. 'hbase' m...
375
376
377
                except Exception as e:
                    print e
                    raise
ea1eb31a   Chunk   spark is privileg...
378
                finally:
f25fd27c   Chunk   staged. 'hbase' m...
379
380
381
382
383
384
385
386
387
388
389
                    tmpf_src.close()
                    tmpf_dst.close()

            self.dict_data.update(dict_data_ext)

            if not writeback:
                return self.dict_data
            else:
                try:
                    with self.table.batch(batch_size=5000) as b:
                        for imgname, imginfo in dict_data_ext.items():
1c2a3fa0   Chunk   staged.
390
391
392
393
394
395
396
397
398
                            b.put(imgname,
                                  {
                                      'cf_pic:data': imginfo[0],
                                      'cf_info:width': str(imginfo[1]),
                                      'cf_info:height': str(imginfo[2]),
                                      'cf_info:size': str(imginfo[3]),
                                      'cf_info:capacity': str(imginfo[4]),
                                      'cf_info:quality': str(imginfo[5]),
                                      'cf_info:rate': str(imginfo[6]),
f25fd27c   Chunk   staged. 'hbase' m...
399
400
401
402
                                      'cf_tag:chosen': str(imginfo[7]),
                                      'cf_tag:class': str(imginfo[8]),
                                  })
                except ValueError:
02528074   Chunk   staged.
403
404
                    raise

0bd44a28   Chunk   staged.
405
        elif mode == 'spark':
0fbc087e   Chunk   staged.
406
            if self.sparker == None:
1c2a3fa0   Chunk   staged.
407
408
409
410
411
412
413
414
415
416
417
                self.sparker = SC.Sparker(host=self.host, appname=self.appname,
                                          master=self.master)

            cols = [
                'cf_pic:data',
                'cf_info:width',
                'cf_info:height',
                'cf_info:size',
                'cf_info:capacity',
                'cf_info:quality',
                'cf_info:rate',
0fbc087e   Chunk   staged.
418
419
                'cf_tag:chosen',
                'cf_tag:class'
84648488   Chunk   reverted.
420
            ]
0fbc087e   Chunk   staged.
421

489c5608   Chunk   debugging...
422
423
            if readforward:
                self.rdd_data = self.sparker.read_hbase(self.table_name, func=rdd.rddparse_all_ILS, collect=False)
0fbc087e   Chunk   staged.
424

489c5608   Chunk   debugging...
425
            # rdd_data_ext = self.rdd_data.map(lambda x: rdd.rddembed_ILS(x, rate=rate)).filter(lambda x: x != None)
0fbc087e   Chunk   staged.
426
            # self.rdd_data = self.rdd_data.union(rdd_data_ext)
1c2a3fa0   Chunk   staged.
427

0fbc087e   Chunk   staged.
428
            self.rdd_data = self.rdd_data.flatMap(lambda x: rdd.rddembed_ILS_EXT(x, rate=rate))
02528074   Chunk   staged.
429
            if not writeback:
0bd44a28   Chunk   staged.
430
                return self.rdd_data
0fbc087e   Chunk   staged.
431
            else:
ea1eb31a   Chunk   spark is privileg...
432
                self.sparker.write_hbase(self.table_name, self.rdd_data, fromrdd=True, columns=cols,
f25fd27c   Chunk   staged. 'hbase' m...
433
434
                                         withdata=withdata)

84648488   Chunk   reverted.
435
436
        else:
            raise Exception("Unknown mode!")
f1fa5b17   Chunk   review & streaming.
437

f25fd27c   Chunk   staged. 'hbase' m...
438
439
440
441
442
443

    def _extract_feat(self, mode='hbase', feattype='ibd', readforward=False, writeback=False, withdata=False):
        print "extracting feat..."
        if mode == 'hbase':
            if self.table == None:
                self.table = self.get_table()
1c2a3fa0   Chunk   staged.
444
445
446
447
448
449
450
451
452
453
454

            if readforward:
                self.dict_data = {}
                cols = [
                    'cf_pic:data',
                    'cf_info:width',
                    'cf_info:height',
                    'cf_info:size',
                    'cf_info:capacity',
                    'cf_info:quality',
                    'cf_info:rate',
24768a99   Chunk   mode 'hbase' fini...
455
456
                    'cf_tag:chosen',
                    'cf_tag:class'
f25fd27c   Chunk   staged. 'hbase' m...
457
458
459
460
461
462
                ]
                for key, data in self.table.scan(columns=cols):
                    data = [data[k] for k in cols]
                    self.dict_data[key] = data

            for imgname, imgdata in self.dict_data.items():
24768a99   Chunk   mode 'hbase' fini...
463
                try:
ea1eb31a   Chunk   spark is privileg...
464
                    tmpf_src = tempfile.NamedTemporaryFile(suffix='.jpg', mode='w+b')
24768a99   Chunk   mode 'hbase' fini...
465
                    tmpf_src.write(imgdata[0])
ea1eb31a   Chunk   spark is privileg...
466
                    tmpf_src.seek(0)
f25fd27c   Chunk   staged. 'hbase' m...
467

ea1eb31a   Chunk   spark is privileg...
468
                    desc = json.dumps(self._get_feat(tmpf_src.name, feattype=feattype).tolist())
f25fd27c   Chunk   staged. 'hbase' m...
469
470

                    self.dict_data[imgname].append(desc)
24768a99   Chunk   mode 'hbase' fini...
471

f25fd27c   Chunk   staged. 'hbase' m...
472
473
                except Exception as e:
                    print e
ea1eb31a   Chunk   spark is privileg...
474
                    raise
f25fd27c   Chunk   staged. 'hbase' m...
475
476
477
478
479
480
481
482
483
                finally:
                    tmpf_src.close()

            if not writeback:
                return self.dict_data
            else:
                try:
                    with self.table.batch(batch_size=5000) as b:
                        for imgname, imginfo in self.dict_data.items():
1c2a3fa0   Chunk   staged.
484
485
486
487
488
489
490
491
492
493
                            b.put(imgname,
                                  {
                                      'cf_pic:data': imginfo[0],
                                      'cf_info:width': str(imginfo[1]),
                                      'cf_info:height': str(imginfo[2]),
                                      'cf_info:size': str(imginfo[3]),
                                      'cf_info:capacity': str(imginfo[4]),
                                      'cf_info:quality': str(imginfo[5]),
                                      'cf_info:rate': str(imginfo[6]),
                                      'cf_tag:chosen': str(imginfo[7]),
f25fd27c   Chunk   staged. 'hbase' m...
494
495
496
497
                                      'cf_tag:class': str(imginfo[8]),
                                      'cf_feat:' + feattype: imginfo[9],
                                  })
                except ValueError:
02528074   Chunk   staged.
498
499
                    raise

0bd44a28   Chunk   staged.
500
        elif mode == 'spark':
2c507774   Chunk   staged.
501
            if self.sparker == None:
1c2a3fa0   Chunk   staged.
502
503
504
505
506
507
508
509
510
511
512
513
                self.sparker = SC.Sparker(host=self.host, appname=self.appname,
                                          master=self.master)

            cols = [
                'cf_pic:data',
                'cf_info:width',
                'cf_info:height',
                'cf_info:size',
                'cf_info:capacity',
                'cf_info:quality',
                'cf_info:rate',
                'cf_tag:chosen',
2c507774   Chunk   staged.
514
515
                'cf_tag:class',
                'cf_feat:' + feattype,
84648488   Chunk   reverted.
516
            ]
2c507774   Chunk   staged.
517

e3e7e73a   Chunk   spider standalone...
518
            if readforward:
8bddd8b3   Chunk   You guess what? T...
519
520
521
                self.rdd_data = self.sparker.read_hbase(self.table_name, func=rdd.rddparse_all_ILS, collect=False)

            self.rdd_data = self.rdd_data.mapValues(lambda items: rdd.rddfeat_ILS(items, feattype))
2c507774   Chunk   staged.
522
523

            # print self.rdd_data.collect()[0]
1c2a3fa0   Chunk   staged.
524
            # return
2c507774   Chunk   staged.
525

f1fa5b17   Chunk   review & streaming.
526
            if not writeback:
02528074   Chunk   staged.
527
                return self.rdd_data
0bd44a28   Chunk   staged.
528
            else:
f25fd27c   Chunk   staged. 'hbase' m...
529
530
531
                print "writing back..."
                self.sparker.write_hbase(self.table_name, self.rdd_data, fromrdd=True, columns=cols,
                                         withdata=withdata)
e3ec1f74   Chunk   staged.
532
        else:
e3e7e73a   Chunk   spider standalone...
533
534
535
536
537
538
539
            raise Exception("Unknown mode!")

    def _analysis(self, mode='analysis', feattype='ibd', readforward=False, writeback=True, withdata=False):
        if mode == 'analysis':
            if self.sparker == None:
                self.sparker = SC.Sparker(host=self.host, appname=self.appname,
                                          master=self.master)
e3e7e73a   Chunk   spider standalone...
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559

            cols = [
                'cf_pic:data',
                'cf_tag:class',
            ]

            if readforward:
                self.rdd_data = self.sparker.read_hbase(self.table_name, func=rdd.rddparse_all_ILS, collect=False)

            self.rdd_data = self.rdd_data.mapValues(lambda items: rdd.rddanalysis_ILS(items))

            # print self.rdd_data.collect()[0]
            # return

            if not writeback:
                return self.rdd_data
            else:
                print "writing back..."
                self.sparker.write_hbase(self.table_name, self.rdd_data, fromrdd=True, columns=cols,
                                         withdata=withdata)
84648488   Chunk   reverted.
560

f25fd27c   Chunk   staged. 'hbase' m...
561
        else:
f1fa5b17   Chunk   review & streaming.
562
            raise Exception("Unknown mode!")
f25fd27c   Chunk   staged. 'hbase' m...
563
564
565

    def format(self):
        print "formatting..."
ea1eb31a   Chunk   spark is privileg...
566
        self._extract_data(mode='hbase', writeback=False)
84648488   Chunk   reverted.
567
        self._embed_data(mode='hbase', rate=0.1, readforward=False, writeback=False)
02528074   Chunk   staged.
568
        self._extract_feat(mode='hbase', feattype='ibd', readforward=False, writeback=True)
f1fa5b17   Chunk   review & streaming.
569

ea1eb31a   Chunk   spark is privileg...
570
571
572

    def load_data(self, mode='hbase', feattype='ibd', tagtype='class', collect=False):
        print "loading data..."
0bd44a28   Chunk   staged.
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
        INDEX = []
        X = []
        Y = []
        if mode == "local":
            dict_dataset = {}

            if feattype == 'coef':  # raw
                with open(self.list_file, 'rb') as tsvfile:
                    tsvfile = csv.reader(tsvfile, delimiter='\t')
                    for line in tsvfile:
                        hash = line[0]
                        tag = line[-1]
                        image = os.path.join(self.img_dir, hash[:3], hash[3:] + '.jpg')
                        if image:
                            im = Jpeg(image, key=sample_key)
e3e7e73a   Chunk   spider standalone...
588
                            dict_dataset[hash] = (tag, im.getCoefMatrix(channel='Y'))
0bd44a28   Chunk   staged.
589
590

                for tag, feat in dict_dataset.values():
ea1eb31a   Chunk   spark is privileg...
591
                    feat.ravel()[[i * 304 + j for i in range(0, 304, 8) for j in range(0, 304, 8)]] = 0
0bd44a28   Chunk   staged.
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
                    X.append(feat.tolist())
                    Y.append(int(tag))

            else:
                with open(self.list_file, 'rb') as tsvfile:
                    tsvfile = csv.reader(tsvfile, delimiter='\t')
                    for line in tsvfile:
                        hash = line[0]
                        tag = line[-1]
                        path_feat = os.path.join(self.feat_dir, hash[:3], hash[3:] + '.' + feattype)
                        if path_feat:
                            with open(path_feat, 'rb') as featfile:
                                dict_dataset[hash] = (tag, json.loads(featfile.read()))

                for tag, feat in dict_dataset.values():
                    # X.append([item for sublist in feat for subsublist in sublist for item in subsublist])
                    X.append(np.array(feat).ravel().tolist())
ea1eb31a   Chunk   spark is privileg...
609
610
611
612
613
                    Y.append(int(tag))

        elif mode == "hbase":
            if self.table == None:
                self.table = self.get_table()
0bd44a28   Chunk   staged.
614
615
616

            col_feat, col_tag = 'cf_feat:' + feattype, 'cf_tag:' + tagtype
            for key, data in self.table.scan(columns=[col_feat, col_tag]):
02528074   Chunk   staged.
617
                # X.append(
ea1eb31a   Chunk   spark is privileg...
618
619
                # [item for sublist in json.loads(data[col_feat]) for subsublist in sublist for item in subsublist])
                X.append(np.array(json.loads(data[col_feat])).ravel().tolist())
02528074   Chunk   staged.
620
621
                Y.append(int(data[col_tag]))

0bd44a28   Chunk   staged.
622
        elif mode == "spark" or mode == "cluster":
02528074   Chunk   staged.
623
            if self.sparker == None:
84648488   Chunk   reverted.
624
                self.sparker = SC.Sparker(host=self.host, appname=self.appname,
02528074   Chunk   staged.
625
626
627
                                          master=self.master)

            rdd_dataset = self.sparker.read_hbase(self.table_name, func=rdd.rddparse_dataset_ILS, collect=False)
ea1eb31a   Chunk   spark is privileg...
628
            if not collect:
02528074   Chunk   staged.
629
                rdd_dataset = rdd_dataset.map(lambda x: LabeledPoint(x[0], x[1]))
ea1eb31a   Chunk   spark is privileg...
630
631
                return rdd_dataset

ea1eb31a   Chunk   spark is privileg...
632
633
634
635
            for tag, feat in rdd_dataset.collect():
                X.append(feat)
                Y.append(tag)
        else:
84648488   Chunk   reverted.
636
637
638
            raise Exception("Unknown mode!")

        return X, Y