Blame view

mdata/ILSVRC_S.py 21.5 KB
ea1eb31a   Chunk   spark is privileg...
1
2
3
__author__ = 'chunk'

from . import *
84648488   Chunk   reverted.
4
from ..mfeat import IntraBlockDiff
ea1eb31a   Chunk   spark is privileg...
5
from ..mspark import SC
02528074   Chunk   staged.
6
from pyspark.mllib.regression import LabeledPoint
ea1eb31a   Chunk   spark is privileg...
7
8
9
from ..common import *

import os, sys
ea1eb31a   Chunk   spark is privileg...
10
11
from hashlib import md5
import csv
ea1eb31a   Chunk   spark is privileg...
12
import json
ea1eb31a   Chunk   spark is privileg...
13
14
15
16
17
18
19
import happybase

from ..mjpeg import *
from ..msteg import *
from ..msteg.steganography import LSB, F3, F4, F5

import numpy as np
ea1eb31a   Chunk   spark is privileg...
20
21
from scipy import stats

f25fd27c   Chunk   staged. 'hbase' m...
22
import tempfile
ea1eb31a   Chunk   spark is privileg...
23
24
25
26
27
28

np.random.seed(sum(map(ord, "whoami")))

package_dir = os.path.dirname(os.path.abspath(__file__))


24768a99   Chunk   mode 'hbase' fini...
29
class DataILSVRC_S(DataDumperBase):
f25fd27c   Chunk   staged. 'hbase' m...
30
31
32
33
34
35
36
37
38
    """
    This module is specially for ILSVRC data processing under spark & hbase.

    We posit that the DB(e.g. HBase) has only the images data with md5 name as id.
    The task is to gennerate info(size,capacity,quality,etc.) and class & chosen tags, and then to perform embedding and finally to calcculate ibd features.

    Each step includes reading from & writing to Hbase (though PC).
    And each step must have a 'spark' mode option, which means that the operation is performed by spark with reading & wrting through RDDs.

35cf2e3a   Chunk   staged.
39
    copyright(c) 2015 chunkplus@gmail.com
f25fd27c   Chunk   staged. 'hbase' m...
40
41
    """

4f36b116   Chunk   staged.
42
    def __init__(self, base='ILSVRC2013_DET_val', category='Train_1'):
1dc7c44b   Chunk   crawler-hbase-spa...
43
        DataDumperBase.__init__(self, base, category)
ea1eb31a   Chunk   spark is privileg...
44

1dc7c44b   Chunk   crawler-hbase-spa...
45
        self.base = base
ea1eb31a   Chunk   spark is privileg...
46
        self.category = category
ea1eb31a   Chunk   spark is privileg...
47
48

        self.dict_data = {}
0fbc087e   Chunk   staged.
49
        self.rdd_data = None
ea1eb31a   Chunk   spark is privileg...
50

4f36b116   Chunk   staged.
51
52
53
54
55
56
        self.table_name = self.base.strip('/').split('/')[-1]
        if self.category != None:
            self.table_name += ('-' + self.category)

        self.sparker = None

1dc7c44b   Chunk   crawler-hbase-spa...
57
        self.steger = F5.F5(sample_key, 1)
f4fb4381   Chunk   staged.
58
59

    def get_table(self):
ea1eb31a   Chunk   spark is privileg...
60
        print "getting table..."
0fbc087e   Chunk   staged.
61
        if self.table != None:
ea1eb31a   Chunk   spark is privileg...
62
            return self.table
24768a99   Chunk   mode 'hbase' fini...
63

4f36b116   Chunk   staged.
64
65
        if self.connection is None:
            c = happybase.Connection('HPC-server')
ea1eb31a   Chunk   spark is privileg...
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
            self.connection = c

        tables = self.connection.tables()
        if self.table_name not in tables:
            families = {'cf_pic': dict(),
                        'cf_info': dict(max_versions=10),
                        'cf_tag': dict(),
                        'cf_feat': dict(),
                        }
            self.connection.create_table(name=self.table_name, families=families)

        table = self.connection.table(name=self.table_name)

        self.table = table

        return table

    def delete_table(self, table_name=None, disable=True):
        print "deleting table..."
        if table_name == None:
            table_name = self.table_name

d47ae6ce   Chunk   staged.
88
        if self.connection is None:
f1fa5b17   Chunk   review & streaming.
89
            c = happybase.Connection('HPC-server')
d47ae6ce   Chunk   staged.
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
            self.connection = c

        tables = self.connection.tables()
        if table_name not in tables:
            return False
        else:
            try:
                self.connection.delete_table(table_name, disable)
            except:
                print 'Exception when deleting table.'
                raise
        return True

    def _get_info(self, img, info_rate=None, tag_chosen=None, tag_class=None):
        """
        Tempfile is our friend. (?)
        """
        info_rate = info_rate if info_rate != None else 0.0
f25fd27c   Chunk   staged. 'hbase' m...
108
109
110
111
112
113
114
        tag_chosen = tag_chosen if tag_chosen != None else stats.bernoulli.rvs(0.8)
        tag_class = tag_class if tag_class != None else 0

        try:
            tmpf = tempfile.NamedTemporaryFile(suffix='.jpg', mode='w+b')
            tmpf.write(img)
            tmpf.seek(0)
1c2a3fa0   Chunk   staged.
115
            im = Jpeg(tmpf.name, key=sample_key)
f25fd27c   Chunk   staged. 'hbase' m...
116
117
118
            info = [
                im.image_width,
                im.image_height,
24768a99   Chunk   mode 'hbase' fini...
119
                im.image_width * im.image_height,
f25fd27c   Chunk   staged. 'hbase' m...
120
                im.getCapacity(),
1c2a3fa0   Chunk   staged.
121
122
123
124
125
126
127
128
129
130
                im.getQuality(),
                info_rate,
                tag_chosen,
                tag_class
            ]
            return info
        except Exception as e:
            print e
        finally:
            tmpf.close()
f25fd27c   Chunk   staged. 'hbase' m...
131
132
133
134
135
136
137

    def _get_feat(self, image, feattype='ibd', **kwargs):
        # size = kwargs.get('size', (48, 48))
        # if feattype == 'hog':
        #     feater = HOG.FeatHOG(size=size)
        if feattype == 'ibd':
            feater = IntraBlockDiff.FeatIntraBlockDiff()
84648488   Chunk   reverted.
138
139
140
141
142
        else:
            raise Exception("Unknown feature type!")

        desc = feater.feat(image)

f25fd27c   Chunk   staged. 'hbase' m...
143
144
145
        return desc

    def _rddparse_data(raw_row):
ea1eb31a   Chunk   spark is privileg...
146
        """
f25fd27c   Chunk   staged. 'hbase' m...
147
        input: (u'key0',u'cf_feat:hog:[0.056273,...]--%--cf_pic:data:\ufffd\ufffd\...--%--cf_tag:hog:True')
ea1eb31a   Chunk   spark is privileg...
148
        return: ([0.056273,...],1)
f25fd27c   Chunk   staged. 'hbase' m...
149

ea1eb31a   Chunk   spark is privileg...
150
        In fact we can also use mapValues.
84648488   Chunk   reverted.
151
        """
1c2a3fa0   Chunk   staged.
152
        key = raw_row[0]
0fbc087e   Chunk   staged.
153
154
155
156
157
158
        # if key == '04650c488a2b163ca8a1f52da6022f03.jpg':
        # with open('/tmp/hhhh','wb') as f:
        # f.write(raw_row[1].decode('unicode-escape')).encode('latin-1')
        items = raw_row[1].decode('unicode-escape').encode('latin-1').split('--%--')
        data = items[0].split('cf_pic:data:')[-1]
        return (key, data)
0fbc087e   Chunk   staged.
159

1c2a3fa0   Chunk   staged.
160
161
162
163
164
    def _rddparse_all(raw_row):
        key = raw_row[0]
        items = raw_row[1].decode('unicode-escape').encode('latin-1').split('--%--')
        data = [items[0].split('cf_pic:data:')[-1]] + [json.loads(item.split(':')[-1]) for item in
                                                       items[1:]]
0fbc087e   Chunk   staged.
165
166
        return (key, data)

84648488   Chunk   reverted.
167
    def _rdd_embed(self, row):
1c2a3fa0   Chunk   staged.
168
        """
0fbc087e   Chunk   staged.
169
        input:
1c2a3fa0   Chunk   staged.
170
            e.g. row =('row1',[1,3400,'hello'])
84648488   Chunk   reverted.
171
        return:
0fbc087e   Chunk   staged.
172
173
            newrow = ('row2',[34,5400,'embeded'])
        """
84648488   Chunk   reverted.
174
        items = row[1]
0fbc087e   Chunk   staged.
175
176
177
178
179
180
181
182
183
        capacity, rate, chosen = items[4], items[6], items[7]

        if chosen == 0:
            return None
        try:
            tmpf_src = tempfile.NamedTemporaryFile(suffix='.jpg', mode='w+b')
            tmpf_src.write(items[0])
            tmpf_src.seek(0)
            tmpf_dst = tempfile.NamedTemporaryFile(suffix='.jpg', mode='w+b')
1c2a3fa0   Chunk   staged.
184

0fbc087e   Chunk   staged.
185
186
187
188
189
190
191
192
193
            if rate == None:
                embed_rate = self.steger.embed_raw_data(tmpf_src.name,
                                                        os.path.join(package_dir, '../res/toembed'),
                                                        tmpf_dst.name)
            else:
                assert (rate >= 0 and rate < 1)
                # print capacity
                hidden = np.random.bytes(int(int(capacity) * rate) / 8)
                embed_rate = self.steger.embed_raw_data(tmpf_src.name, hidden, tmpf_dst.name,
84648488   Chunk   reverted.
194
                                                        frommem=True)
0fbc087e   Chunk   staged.
195
196
197
198
199

            tmpf_dst.seek(0)
            raw = tmpf_dst.read()
            index = md5(raw).hexdigest()

84648488   Chunk   reverted.
200
            return (index + '.jpg', [raw] + self._get_info(raw, embed_rate, 0, 1))
0fbc087e   Chunk   staged.
201
202
203
204
205
206
207
208
209
210
211
212
213
214

        except Exception as e:
            print e
            raise
        finally:
            tmpf_src.close()
            tmpf_dst.close()

    def _extract_data(self, mode='hbase', writeback=False, withdata=True):
        """
        Get info barely out of image data.
        """
        print "extracting data..."
        if mode == 'hbase':
84648488   Chunk   reverted.
215
            if self.table == None:
1dc7c44b   Chunk   crawler-hbase-spa...
216
                self.table = self.get_table()
f25fd27c   Chunk   staged. 'hbase' m...
217
218
219

            cols = ['cf_pic:data']
            for key, data in self.table.scan(columns=cols):
f1fa5b17   Chunk   review & streaming.
220
                data = data['cf_pic:data']
f25fd27c   Chunk   staged. 'hbase' m...
221
222
223
224
225
                self.dict_data[key] = [data] + self._get_info(data)

            if not writeback:
                return self.dict_data
            else:
24768a99   Chunk   mode 'hbase' fini...
226
227
                try:
                    with self.table.batch(batch_size=5000) as b:
f25fd27c   Chunk   staged. 'hbase' m...
228
229
230
231
232
233
234
235
236
237
238
                        for imgname, imginfo in self.dict_data.items():
                            b.put(imgname,
                                  {
                                      # 'cf_pic:data': imginfo[0],
                                      'cf_info:width': str(imginfo[1]),
                                      'cf_info:height': str(imginfo[2]),
                                      'cf_info:size': str(imginfo[3]),
                                      'cf_info:capacity': str(imginfo[4]),
                                      'cf_info:quality': str(imginfo[5]),
                                      'cf_info:rate': str(imginfo[6]),
                                      'cf_tag:chosen': str(imginfo[7]),
1c2a3fa0   Chunk   staged.
239
240
241
242
243
244
245
246
                                      'cf_tag:class': str(imginfo[8]),
                                  })
                except ValueError:
                    raise


        elif mode == 'spark':
            if self.sparker == None:
24768a99   Chunk   mode 'hbase' fini...
247
                self.sparker = SC.Sparker(host='HPC-server', appname='ImageILSVRC-S',
f25fd27c   Chunk   staged. 'hbase' m...
248
249
250
251
252
                                          master='spark://HPC-server:7077')

            cols = [
                'cf_pic:data',
                'cf_info:width',
02528074   Chunk   staged.
253
254
                'cf_info:height',
                'cf_info:size',
0bd44a28   Chunk   staged.
255
                'cf_info:capacity',
0fbc087e   Chunk   staged.
256
                'cf_info:quality',
1c2a3fa0   Chunk   staged.
257
258
259
260
261
262
263
264
265
266
267
                'cf_info:rate',
                'cf_tag:chosen',
                'cf_tag:class'
            ]

            # # Debug
            # tmp_data = self.sparker.read_hbase(self.table_name, func=SC.rddparse_data_ILS,
            # collect=False)
            # # tmp_data = tmp_data.mapValues(lambda data: [data] + SC.rddinfo_ILS(data))
            # print tmp_data.collect()[0][1]
            # return
0fbc087e   Chunk   staged.
268

3b4e250d   Chunk   staged.
269

02528074   Chunk   staged.
270
            self.rdd_data = self.sparker.read_hbase(self.table_name, func=SC.rddparse_data_ILS,
1c2a3fa0   Chunk   staged.
271
272
273
274
                                                    collect=False).mapValues(
                lambda data: [data] + SC.rddinfo_ILS(data))

            if not writeback:
3b4e250d   Chunk   staged.
275
276
                return self.rdd_data
            else:
02528074   Chunk   staged.
277
                self.sparker.write_hbase(self.table_name, self.rdd_data, fromrdd=True, columns=cols,
0bd44a28   Chunk   staged.
278
                                         withdata=withdata)
1c2a3fa0   Chunk   staged.
279

3b4e250d   Chunk   staged.
280
        else:
0fbc087e   Chunk   staged.
281
282
283
            raise Exception("Unknown mode!")

    def _embed_data(self, mode='hbase', rate=None, readforward=False, writeback=False,
02528074   Chunk   staged.
284
                    withdata=True):
0bd44a28   Chunk   staged.
285
        print "embedding data..."
e3e7e73a   Chunk   spider standalone...
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
        if mode == 'hbase':
            if self.table == None:
                self.table = self.get_table()

            if readforward:
                self.dict_data = {}

                cols = [
                    'cf_pic:data',
                    'cf_info:width',
                    'cf_info:height',
                    'cf_info:size',
                    'cf_info:capacity',
                    'cf_info:quality',
                    'cf_info:rate',
                    'cf_tag:chosen',
                    'cf_tag:class'
                ]

                for key, data in self.table.scan(columns=cols):
                    data = [data[k] for k in cols]
                    self.dict_data[key] = data

            dict_data_ext = {}

            for imgname, imgdata in self.dict_data.items():
0fbc087e   Chunk   staged.
312
                capacity, chosen = int(imgdata[4]), int(imgdata[7])
ea1eb31a   Chunk   spark is privileg...
313

f25fd27c   Chunk   staged. 'hbase' m...
314
                if chosen == 0:
ea1eb31a   Chunk   spark is privileg...
315
                    continue
84648488   Chunk   reverted.
316
317

                try:
f1fa5b17   Chunk   review & streaming.
318
                    tmpf_src = tempfile.NamedTemporaryFile(suffix='.jpg', mode='w+b')
f25fd27c   Chunk   staged. 'hbase' m...
319
320
321
322
323
324
                    tmpf_src.write(imgdata[0])
                    tmpf_src.seek(0)
                    tmpf_dst = tempfile.NamedTemporaryFile(suffix='.jpg', mode='w+b')

                    if rate == None:
                        embed_rate = self.steger.embed_raw_data(tmpf_src.name,
1c2a3fa0   Chunk   staged.
325
326
327
328
329
330
331
332
333
334
335
336
337
                                                                os.path.join(package_dir,
                                                                             '../res/toembed'),
                                                                tmpf_dst.name)
                    else:
                        assert (rate >= 0 and rate < 1)
                        # print capacity
                        hidden = np.random.bytes(int(capacity * rate) / 8)
                        embed_rate = self.steger.embed_raw_data(tmpf_src.name, hidden,
                                                                tmpf_dst.name, frommem=True)

                    tmpf_dst.seek(0)
                    raw = tmpf_dst.read()
                    index = md5(raw).hexdigest()
24768a99   Chunk   mode 'hbase' fini...
338
339
                    dict_data_ext[index + '.jpg'] = [raw] + self._get_info(raw, embed_rate, 0, 1)

f25fd27c   Chunk   staged. 'hbase' m...
340
341
342
343
344

                except Exception as e:
                    print e
                    raise
                finally:
1dc7c44b   Chunk   crawler-hbase-spa...
345
346
347
348
349
                    tmpf_src.close()
                    tmpf_dst.close()

            self.dict_data.update(dict_data_ext)

f25fd27c   Chunk   staged. 'hbase' m...
350
351
352
            if not writeback:
                return self.dict_data
            else:
24768a99   Chunk   mode 'hbase' fini...
353
                try:
f25fd27c   Chunk   staged. 'hbase' m...
354
355
356
                    with self.table.batch(batch_size=5000) as b:
                        for imgname, imginfo in dict_data_ext.items():
                            b.put(imgname,
0fbc087e   Chunk   staged.
357
                                  {
84648488   Chunk   reverted.
358
                                      'cf_pic:data': imginfo[0],
0fbc087e   Chunk   staged.
359
                                      'cf_info:width': str(imginfo[1]),
f25fd27c   Chunk   staged. 'hbase' m...
360
361
362
                                      'cf_info:height': str(imginfo[2]),
                                      'cf_info:size': str(imginfo[3]),
                                      'cf_info:capacity': str(imginfo[4]),
1dc7c44b   Chunk   crawler-hbase-spa...
363
                                      'cf_info:quality': str(imginfo[5]),
84648488   Chunk   reverted.
364
                                      'cf_info:rate': str(imginfo[6]),
f25fd27c   Chunk   staged. 'hbase' m...
365
366
367
368
369
                                      'cf_tag:chosen': str(imginfo[7]),
                                      'cf_tag:class': str(imginfo[8]),
                                  })
                except ValueError:
                    raise
ea1eb31a   Chunk   spark is privileg...
370

ea1eb31a   Chunk   spark is privileg...
371
        elif mode == 'spark':
f25fd27c   Chunk   staged. 'hbase' m...
372
373
            if self.sparker == None:
                self.sparker = SC.Sparker(host='HPC-server', appname='ImageILSVRC-S',
24768a99   Chunk   mode 'hbase' fini...
374
                                          master='spark://HPC-server:7077')
f25fd27c   Chunk   staged. 'hbase' m...
375
376
377

            cols = [
                'cf_pic:data',
ea1eb31a   Chunk   spark is privileg...
378
                'cf_info:width',
f25fd27c   Chunk   staged. 'hbase' m...
379
380
381
382
383
384
385
386
387
388
389
                'cf_info:height',
                'cf_info:size',
                'cf_info:capacity',
                'cf_info:quality',
                'cf_info:rate',
                'cf_tag:chosen',
                'cf_tag:class'
            ]

            if readforward:
                self.rdd_data = self.sparker.read_hbase(self.table_name, func=SC.rddparse_all_ILS,
1c2a3fa0   Chunk   staged.
390
391
392
393
394
395
396
397
398
                                                        collect=False)

            # rdd_data_ext = self.rdd_data.map(lambda x: SC.rddembed_ILS(x, rate=rate)).filter(lambda x: x != None)
            # self.rdd_data = self.rdd_data.union(rdd_data_ext)

            self.rdd_data = self.rdd_data.flatMap(lambda x: SC.rddembed_ILS_EXT(x, rate=rate))
            if not writeback:
                return self.rdd_data
            else:
f25fd27c   Chunk   staged. 'hbase' m...
399
400
401
402
                self.sparker.write_hbase(self.table_name, self.rdd_data, fromrdd=True, columns=cols,
                                         withdata=withdata)

        else:
02528074   Chunk   staged.
403
404
            raise Exception("Unknown mode!")

0bd44a28   Chunk   staged.
405
    def _extract_feat(self, mode='hbase', feattype='ibd', readforward=False, writeback=False,
0fbc087e   Chunk   staged.
406
                      withdata=False):
1c2a3fa0   Chunk   staged.
407
408
409
410
411
412
413
414
415
416
417
        print "extracting feat..."
        if mode == 'hbase':
            if self.table == None:
                self.table = self.get_table()

            if readforward:
                self.dict_data = {}
                cols = [
                    'cf_pic:data',
                    'cf_info:width',
                    'cf_info:height',
0fbc087e   Chunk   staged.
418
419
                    'cf_info:size',
                    'cf_info:capacity',
84648488   Chunk   reverted.
420
                    'cf_info:quality',
0fbc087e   Chunk   staged.
421
                    'cf_info:rate',
489c5608   Chunk   debugging...
422
423
                    'cf_tag:chosen',
                    'cf_tag:class'
0fbc087e   Chunk   staged.
424
                ]
489c5608   Chunk   debugging...
425
                for key, data in self.table.scan(columns=cols):
0fbc087e   Chunk   staged.
426
                    data = [data[k] for k in cols]
1c2a3fa0   Chunk   staged.
427
                    self.dict_data[key] = data
0fbc087e   Chunk   staged.
428

02528074   Chunk   staged.
429
            for imgname, imgdata in self.dict_data.items():
0bd44a28   Chunk   staged.
430
                try:
0fbc087e   Chunk   staged.
431
                    tmpf_src = tempfile.NamedTemporaryFile(suffix='.jpg', mode='w+b')
ea1eb31a   Chunk   spark is privileg...
432
                    tmpf_src.write(imgdata[0])
f25fd27c   Chunk   staged. 'hbase' m...
433
434
                    tmpf_src.seek(0)

84648488   Chunk   reverted.
435
436
                    desc = json.dumps(self._get_feat(tmpf_src.name, feattype=feattype).tolist())

f1fa5b17   Chunk   review & streaming.
437
                    self.dict_data[imgname].append(desc)
f25fd27c   Chunk   staged. 'hbase' m...
438
439
440
441
442
443

                except Exception as e:
                    print e
                    raise
                finally:
                    tmpf_src.close()
1c2a3fa0   Chunk   staged.
444
445
446
447
448
449
450
451
452
453
454

            if not writeback:
                return self.dict_data
            else:
                try:
                    with self.table.batch(batch_size=5000) as b:
                        for imgname, imginfo in self.dict_data.items():
                            b.put(imgname,
                                  {
                                      'cf_pic:data': imginfo[0],
                                      'cf_info:width': str(imginfo[1]),
24768a99   Chunk   mode 'hbase' fini...
455
456
                                      'cf_info:height': str(imginfo[2]),
                                      'cf_info:size': str(imginfo[3]),
f25fd27c   Chunk   staged. 'hbase' m...
457
458
459
460
461
462
                                      'cf_info:capacity': str(imginfo[4]),
                                      'cf_info:quality': str(imginfo[5]),
                                      'cf_info:rate': str(imginfo[6]),
                                      'cf_tag:chosen': str(imginfo[7]),
                                      'cf_tag:class': str(imginfo[8]),
                                      'cf_feat:' + feattype: imginfo[9],
24768a99   Chunk   mode 'hbase' fini...
463
                                  })
ea1eb31a   Chunk   spark is privileg...
464
                except ValueError:
24768a99   Chunk   mode 'hbase' fini...
465
                    raise
ea1eb31a   Chunk   spark is privileg...
466

f25fd27c   Chunk   staged. 'hbase' m...
467
        elif mode == 'spark':
ea1eb31a   Chunk   spark is privileg...
468
            if self.sparker == None:
f25fd27c   Chunk   staged. 'hbase' m...
469
470
                self.sparker = SC.Sparker(host='HPC-server', appname='ImageILSVRC-S',
                                          master='spark://HPC-server:7077')
24768a99   Chunk   mode 'hbase' fini...
471

f25fd27c   Chunk   staged. 'hbase' m...
472
473
            cols = [
                'cf_pic:data',
ea1eb31a   Chunk   spark is privileg...
474
                'cf_info:width',
f25fd27c   Chunk   staged. 'hbase' m...
475
476
477
478
479
480
481
482
483
                'cf_info:height',
                'cf_info:size',
                'cf_info:capacity',
                'cf_info:quality',
                'cf_info:rate',
                'cf_tag:chosen',
                'cf_tag:class',
                'cf_feat:' + feattype,
            ]
1c2a3fa0   Chunk   staged.
484
485
486
487
488
489
490
491
492
493

            if readforward:
                self.rdd_data = self.sparker.read_hbase(self.table_name, func=SC.rddparse_all_ILS,
                                                        collect=False)

            self.rdd_data = self.rdd_data.mapValues(lambda items: SC.rddfeat_ILS(items))

            # print self.rdd_data.collect()[0]
            # return

f25fd27c   Chunk   staged. 'hbase' m...
494
495
496
497
            if not writeback:
                return self.rdd_data
            else:
                print "writing back..."
02528074   Chunk   staged.
498
499
                self.sparker.write_hbase(self.table_name, self.rdd_data, fromrdd=True, columns=cols,
                                         withdata=withdata)
0bd44a28   Chunk   staged.
500

2c507774   Chunk   staged.
501

1c2a3fa0   Chunk   staged.
502
503
504
505
506
507
508
509
510
511
512
513
        else:
            raise Exception("Unknown mode!")

    def format(self):
        print "formatting..."
        self._extract_data(mode='hbase', writeback=False)
        self._embed_data(mode='hbase', rate=0.1, readforward=False, writeback=False)
        self._extract_feat(mode='hbase', feattype='ibd', readforward=False, writeback=True)

    def load_data(self, mode='hbase', feattype='ibd', tagtype='class', collect=False):
        print "loading data..."
        INDEX = []
2c507774   Chunk   staged.
514
515
        X = []
        Y = []
84648488   Chunk   reverted.
516
        if mode == "local":
2c507774   Chunk   staged.
517
            dict_dataset = {}
e3e7e73a   Chunk   spider standalone...
518

8bddd8b3   Chunk   You guess what? T...
519
520
521
            if feattype == 'coef':  # raw
                with open(self.list_file, 'rb') as tsvfile:
                    tsvfile = csv.reader(tsvfile, delimiter='\t')
2c507774   Chunk   staged.
522
523
                    for line in tsvfile:
                        hash = line[0]
1c2a3fa0   Chunk   staged.
524
                        tag = line[-1]
2c507774   Chunk   staged.
525
                        image = os.path.join(self.img_dir, hash[:3], hash[3:] + '.jpg')
f1fa5b17   Chunk   review & streaming.
526
                        if image:
02528074   Chunk   staged.
527
                            im = Jpeg(image, key=sample_key)
0bd44a28   Chunk   staged.
528
                            dict_dataset[hash] = (tag, im.getCoefMatrix(channel='Y'))
f25fd27c   Chunk   staged. 'hbase' m...
529
530
531

                for tag, feat in dict_dataset.values():
                    feat.ravel()[
e3ec1f74   Chunk   staged.
532
                        [i * 304 + j for i in range(0, 304, 8) for j in range(0, 304, 8)]] = 0
e3e7e73a   Chunk   spider standalone...
533
534
535
536
537
538
539
                    X.append(feat.tolist())
                    Y.append(int(tag))

            else:
                with open(self.list_file, 'rb') as tsvfile:
                    tsvfile = csv.reader(tsvfile, delimiter='\t')
                    for line in tsvfile:
e3e7e73a   Chunk   spider standalone...
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
                        hash = line[0]
                        tag = line[-1]
                        path_feat = os.path.join(self.feat_dir, hash[:3], hash[3:] + '.' + feattype)
                        if path_feat:
                            with open(path_feat, 'rb') as featfile:
                                dict_dataset[hash] = (tag, json.loads(featfile.read()))

                for tag, feat in dict_dataset.values():
                    # X.append([item for sublist in feat for subsublist in sublist for item in subsublist])
                    X.append(np.array(feat).ravel().tolist())
                    Y.append(int(tag))

        elif mode == "hbase":
            if self.table == None:
                self.table = self.get_table()

            col_feat, col_tag = 'cf_feat:' + feattype, 'cf_tag:' + tagtype
            for key, data in self.table.scan(columns=[col_feat, col_tag]):
                # X.append(
                # [item for sublist in json.loads(data[col_feat]) for subsublist in sublist for item in subsublist])
84648488   Chunk   reverted.
560
                X.append(np.array(json.loads(data[col_feat])).ravel().tolist())
f25fd27c   Chunk   staged. 'hbase' m...
561
                Y.append(int(data[col_tag]))
f1fa5b17   Chunk   review & streaming.
562

f25fd27c   Chunk   staged. 'hbase' m...
563
564
565
        elif mode == "spark" or mode == "cluster":
            if self.sparker == None:
                self.sparker = SC.Sparker(host='HPC-server', appname='ImageILSVRC-S',
ea1eb31a   Chunk   spark is privileg...
566
                                          master='spark://HPC-server:7077')
84648488   Chunk   reverted.
567

02528074   Chunk   staged.
568
            rdd_dataset = self.sparker.read_hbase(self.table_name, func=SC.rddparse_dataset_ILS,
f1fa5b17   Chunk   review & streaming.
569
                                                  collect=False)
ea1eb31a   Chunk   spark is privileg...
570
571
572
            if not collect:
                rdd_dataset = rdd_dataset.map(lambda x: LabeledPoint(x[0], x[1]))
                return rdd_dataset
0bd44a28   Chunk   staged.
573
574
575
576
577
578
579
580

            for tag, feat in rdd_dataset.collect():
                X.append(feat)
                Y.append(tag)
        else:
            raise Exception("Unknown mode!")

        return X, Y
e3e7e73a   Chunk   spider standalone...

0bd44a28   Chunk   staged.

ea1eb31a   Chunk   spark is privileg...

0bd44a28   Chunk   staged.

ea1eb31a   Chunk   spark is privileg...

0bd44a28   Chunk   staged.

02528074   Chunk   staged.

ea1eb31a   Chunk   spark is privileg...

02528074   Chunk   staged.

0bd44a28   Chunk   staged.

02528074   Chunk   staged.

84648488   Chunk   reverted.

02528074   Chunk   staged.

ea1eb31a   Chunk   spark is privileg...

02528074   Chunk   staged.

ea1eb31a   Chunk   spark is privileg...

ea1eb31a   Chunk   spark is privileg...

84648488   Chunk   reverted.