Blame view

mspark/SC.py 16.8 KB
3b4e250d   Chunk   staged.
1
# -*- coding: utf-8 -*-
a9c10957   Chunk   hbase-svm & spark...
2
3
__author__ = 'chunk'

ca73c96f   Chunk   Transformed into ...
4
from ..common import *
f69baeb6   Chunk   spark streaming ...
5
6
from .dependencies import *
from . import *
3b4e250d   Chunk   staged.
7
8
9
10
11
# from ..mdata import MSR, CV, ILSVRC, ILSVRC_S

from ..mjpeg import *
from ..msteg import *
from ..msteg.steganography import LSB, F3, F4, F5
1c2a3fa0   Chunk   staged.
12
from ..mfeat import IntraBlockDiff
e3e7e73a   Chunk   spider standalone...
13

ca73c96f   Chunk   Transformed into ...
14
import sys
a9c10957   Chunk   hbase-svm & spark...
15
from pyspark import RDD
02528074   Chunk   staged.
16
from pyspark import SparkConf, SparkContext
a9c10957   Chunk   hbase-svm & spark...
17
18
19
20
from pyspark.mllib.classification import LogisticRegressionWithSGD, SVMWithSGD
from pyspark.mllib.regression import LabeledPoint
from numpy import array
import json
5ec38adb   Chunk   spark-local of da...
21
22
import pickle
import tempfile
3b4e250d   Chunk   staged.
23
24
25

import numpy as np
from scipy import stats
3b4e250d   Chunk   staged.
26
27
28
from hashlib import md5

np.random.seed(sum(map(ord, "whoami")))
1c2a3fa0   Chunk   staged.
29
package_dir = os.path.dirname(os.path.abspath(__file__))
3b4e250d   Chunk   staged.
30

e3e7e73a   Chunk   spider standalone...
31

3b4e250d   Chunk   staged.
32
def rddparse_data_CV(raw_row):
e3ec1f74   Chunk   staged.
33
    """
3b4e250d   Chunk   staged.
34
    input: (u'key0',u'cf_feat:hog:[0.056273,...]--%--cf_pic:data:\ufffd\ufffd\...--%--cf_tag:hog:True')
5ec38adb   Chunk   spark-local of da...
35
36
37
38
39
40
41
42
43
44
    return: ([0.056273,...],1)
    """
    data = raw_row[1].split('--%--')
    feat = json.loads(data[0].split(':')[-1])
    tag = 1 if data[-1].split(':')[-1] == 'True' else 0
    return (feat, tag)


def rddparse_data_ILS(raw_row):
    """
3b4e250d   Chunk   staged.
45
46
47
48
49
50
51
    input: (u'key0',u'cf_feat:hog:[0.056273,...]--%--cf_pic:data:\ufffd\ufffd\...--%--cf_tag:hog:True')
    return: ([0.056273,...],1)

    In fact we can also use mapValues.
    """
    key = raw_row[0]
    # if key == '04650c488a2b163ca8a1f52da6022f03.jpg':
3b4e250d   Chunk   staged.
52
    # with open('/tmp/hhhh','wb') as f:
1c2a3fa0   Chunk   staged.
53
54
55
56
    # f.write(raw_row[1].decode('unicode-escape')).encode('latin-1')
    items = raw_row[1].decode('unicode-escape').encode('latin-1').split('--%--')
    data = items[0].split('cf_pic:data:')[-1]
    return (key, data)
3b4e250d   Chunk   staged.
57
58
59
60
61


def rddparse_all_ILS(raw_row):
    """
    Deprecated
8bddd8b3   Chunk   You guess what? T...
62
63
64
    """
    key = raw_row[0]
    items = raw_row[1].decode('unicode-escape').encode('latin-1').split('--%--')
3b4e250d   Chunk   staged.
65

1c2a3fa0   Chunk   staged.
66
    # @TODO
8bddd8b3   Chunk   You guess what? T...
67
68
69
    # N.B "ValueError: No JSON object could be decoded" Because the spark-hbase IO is based on strings.
    # And the order of items is not as expected. See ../res/row-sample.txt or check in hbase shell for that.

02528074   Chunk   staged.
70
71
    data = [items[0].split('cf_pic:data:')[-1]] + [json.loads(item.split(':')[-1]) for item in items[1:]]

ece71a0d   Chunk   Streaming! encodi...
72
73
    return (key, data)

8bddd8b3   Chunk   You guess what? T...
74

3b4e250d   Chunk   staged.
75
76
77
def rddparse_dataset_ILS(raw_row):
    if raw_row[0] == '04650c488a2b163ca8a1f52da6022f03.jpg':
        print raw_row
02528074   Chunk   staged.
78
79
80
81
82
83
84
    items = raw_row[1].decode('unicode-escape').encode('latin-1').split('--%--')
    # tag = int(items[-2].split('cf_tag:' + tagtype)[-1])
    # feat = [item for sublist in json.loads(items[-1].split('cf_feat:' + feattype)[-1]) for subsublist in sublist for item in subsublist]
    tag = int(items[-1].split(':')[-1])
    feat = [item for sublist in json.loads(items[0].split(':')[-1]) for subsublist in sublist for item in subsublist]

    return (tag, feat)
ece71a0d   Chunk   Streaming! encodi...
85
86


02528074   Chunk   staged.
87
88
89
90
def rddinfo_ILS(img, info_rate=None, tag_chosen=None, tag_class=None):
    """
    Tempfile is our friend. (?)
    """
1c2a3fa0   Chunk   staged.
91
    info_rate = info_rate if info_rate != None else 0.0
3b4e250d   Chunk   staged.
92
93
94
95
96
97
98
    tag_chosen = tag_chosen if tag_chosen != None else stats.bernoulli.rvs(0.8)
    tag_class = tag_class if tag_class != None else 0
    try:
        tmpf = tempfile.NamedTemporaryFile(suffix='.jpg', mode='w+b', delete=True)
        tmpf.write(img)
        tmpf.seek(0)
        im = Jpeg(tmpf.name, key=sample_key)
489c5608   Chunk   debugging...
99
        info = [
3b4e250d   Chunk   staged.
100
101
102
            im.image_width,
            im.image_height,
            im.image_width * im.image_height,
1c2a3fa0   Chunk   staged.
103
104
105
106
107
108
109
110
111
112
            im.getCapacity(),
            im.getQuality(),
            info_rate,
            tag_chosen,
            tag_class
        ]
        return info
    except Exception as e:
        print e
        raise
3b4e250d   Chunk   staged.
113
114
115
    finally:
        tmpf.close()

1c2a3fa0   Chunk   staged.
116

3b4e250d   Chunk   staged.
117
118
119
120
def rddembed_ILS(row, rate=None):
    """
    input:
        e.g. row =('row1',[1,3400,'hello'])
d47ae6ce   Chunk   staged.
121
    return:
3b4e250d   Chunk   staged.
122
123
124
125
126
127
128
        newrow = ('row2',[34,5400,'embeded'])
    """
    items = row[1]
    capacity, chosen = int(items[4]), int(items[7])
    if chosen == 0:
        return None
    try:
d47ae6ce   Chunk   staged.
129
        tmpf_src = tempfile.NamedTemporaryFile(suffix='.jpg', mode='w+b')
3b4e250d   Chunk   staged.
130
131
132
133
134
135
136
137
        tmpf_src.write(items[0])
        tmpf_src.seek(0)
        tmpf_dst = tempfile.NamedTemporaryFile(suffix='.jpg', mode='w+b')

        steger = F5.F5(sample_key, 1)

        if rate == None:
            embed_rate = steger.embed_raw_data(tmpf_src.name, os.path.join(package_dir, '../res/toembed'),
1c2a3fa0   Chunk   staged.
138
139
                                               tmpf_dst.name)
        else:
3b4e250d   Chunk   staged.
140
            assert (rate >= 0 and rate < 1)
ece71a0d   Chunk   Streaming! encodi...
141
142
            # print capacity
            hidden = np.random.bytes(int(int(capacity) * rate) / 8)
3b4e250d   Chunk   staged.
143
144
145
146
147
148
149
150
151
152
153
            embed_rate = steger.embed_raw_data(tmpf_src.name, hidden, tmpf_dst.name, frommem=True)

        tmpf_dst.seek(0)
        raw = tmpf_dst.read()
        index = md5(raw).hexdigest()

        return (index + '.jpg', [raw] + rddinfo_ILS(raw, embed_rate, 0, 1))

    except Exception as e:
        print e
        raise
1c2a3fa0   Chunk   staged.
154
    finally:
3b4e250d   Chunk   staged.
155
156
157
158
159
160
161
162
        tmpf_src.close()
        tmpf_dst.close()


def rddembed_ILS_EXT(row, rate=None):
    """
    input:
        e.g. row =('row1',[1,3400,'hello'])
d642d837   Chunk   staged.
163
    return:
489c5608   Chunk   debugging...
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
        newrow = ('row2',[34,5400,'embeded']) or NULL
        [row,newrow]
    """
    items = row[1]
    capacity, chosen = int(items[4]), int(items[7])
    if chosen == 0:
        return [row]
    try:
        tmpf_src = tempfile.NamedTemporaryFile(suffix='.jpg', mode='w+b')
        tmpf_src.write(items[0])
        tmpf_src.seek(0)
        tmpf_dst = tempfile.NamedTemporaryFile(suffix='.jpg', mode='w+b')

        steger = F5.F5(sample_key, 1)

        if rate == None:
            embed_rate = steger.embed_raw_data(tmpf_src.name, os.path.join(package_dir, '../res/toembed'),
                                               tmpf_dst.name)
51708346   Chunk   final experiments...
182
        else:
489c5608   Chunk   debugging...
183
184
            assert (rate >= 0 and rate < 1)
            # print capacity
ece71a0d   Chunk   Streaming! encodi...
185
186
            hidden = np.random.bytes(int(int(capacity) * rate) / 8)
            embed_rate = steger.embed_raw_data(tmpf_src.name, hidden, tmpf_dst.name, frommem=True)
489c5608   Chunk   debugging...
187
188
189
190
191
192
193
194
195
196
197

        tmpf_dst.seek(0)
        raw = tmpf_dst.read()
        index = md5(raw).hexdigest()

        return [row, (index + '.jpg', [raw] + rddinfo_ILS(raw, embed_rate, 0, 1))]

    except Exception as e:
        print e
        raise
    finally:
d642d837   Chunk   staged.
198
        tmpf_src.close()
489c5608   Chunk   debugging...
199
200
201
202
203
204
205
206
        tmpf_dst.close()


def _get_feat(image, feattype='ibd', **kwargs):
    if feattype == 'ibd':
        feater = IntraBlockDiff.FeatIntraBlockDiff()
    else:
        raise Exception("Unknown feature type!")
3b4e250d   Chunk   staged.
207

1c2a3fa0   Chunk   staged.
208
209
210
211
212
213
214
215
216
217
218
    desc = feater.feat(image)

    return desc


def rddfeat_ILS(items, feattype='ibd', **kwargs):
    try:
        tmpf_src = tempfile.NamedTemporaryFile(suffix='.jpg', mode='w+b')
        tmpf_src.write(items[0])
        tmpf_src.seek(0)

8bddd8b3   Chunk   You guess what? T...
219
        desc = json.dumps(_get_feat(tmpf_src.name, feattype=feattype).tolist())
1c2a3fa0   Chunk   staged.
220
221
222
223
224
225
        # print 'desccccccccccccccccccc',desc
        return items + [desc]

    except Exception as e:
        print e
        raise
8bddd8b3   Chunk   You guess what? T...
226
227
    finally:
        tmpf_src.close()
1c2a3fa0   Chunk   staged.
228
229
230
231
232
233
234


def format_out(row, cols, withdata=False):
    """
    input:
        e.g. row =('row1',[1,3400,'hello'])
            cols = [['cf_info', 'id'], ['cf_info', 'size'], ['cf_tag', 'desc']]
e3ec1f74   Chunk   staged.
235
236
    return:
        [('row1',['row1', 'cf_info', 'id', '1']),('row1',['row1', 'cf_info', 'size', '3400']),('row1',['row1', 'cf_tag', 'desc', 'hello'])]
4f36b116   Chunk   staged.
237
238
239
    """
    puts = []
    key = row[0]
e3ec1f74   Chunk   staged.
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
    # if key == '04650c488a2b163ca8a1f52da6022f03.jpg':
    # print row
    if not withdata:
        for data, col in zip(row[1][1:], cols[1:]):
            puts.append((key, [key] + col + [str(data)]))
    else:
        for data, col in zip(row[1], cols):
            puts.append((key, [key] + col + [str(data)]))
    return puts


# scconf = SparkConf()
# scconf.setSparkHome("HPC-server") \
# .setMaster("spark://HPC-server:7077") \
#     .setAppName("example")
# sc = SparkContext(conf=scconf)
#
e3e7e73a   Chunk   spider standalone...
257
#
1c2a3fa0   Chunk   staged.
258
# def read_hbase(table_name, func=None, collect=False):
d47ae6ce   Chunk   staged.
259
#     """
0fbc087e   Chunk   staged.
260
261
262
263
264
#     ref - http://happybase.readthedocs.org/en/latest/user.html#retrieving-data
#
#     Filter format:
#         columns=['cf1:col1', 'cf1:col2']
#         or
1c2a3fa0   Chunk   staged.
265
#         columns=['cf1']
0fbc087e   Chunk   staged.
266
267
268
#
#     """
#
d47ae6ce   Chunk   staged.
269
270
271
272
273
274
275
276
#     hconf = {
#         "hbase.zookeeper.quorum": "HPC-server, HPC, HPC2",
#         # "hbase.zookeeper.quorum": self.host,
#         "hbase.mapreduce.inputtable": table_name,
#     }
#
#     hbase_rdd = sc.newAPIHadoopRDD(inputFormatClass=hparams["inputFormatClass"],
#                                            keyClass=hparams["readKeyClass"],
0fbc087e   Chunk   staged.
277
278
#                                            valueClass=hparams["readValueClass"],
#                                            keyConverter=hparams["readKeyConverter"],
26616791   Chunk   RDD-hbase bug fix...
279
#                                            valueConverter=hparams["readValueConverter"],
54e2adda   Chunk   staged.
280
281
#                                            conf=hconf)
#
26616791   Chunk   RDD-hbase bug fix...
282
#     parser = func if func != None else rddparse_data_CV
e3ec1f74   Chunk   staged.
283
#     hbase_rdd = hbase_rdd.map(lambda x: parser(x))
54e2adda   Chunk   staged.
284
285
286
287
#
#     if collect:
#         return hbase_rdd.collect()
#     else:
4f36b116   Chunk   staged.
288
#         return hbase_rdd
54e2adda   Chunk   staged.
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
#
#
# def write_hbase(table_name, data, fromrdd=False, columns=None, withdata=False):
#     """
#     Data Format: (Deprecated)
#         e.g. [["row8", "f1", "", "caocao cao"], ["row9", "f1", "c1", "asdfg hhhh"]]
#
#     Data(from dictionary):
#         e.g. data ={'row1':[1,3400,'hello'], 'row2':[34,5000,'here in mine']},
#             cols = ['cf_info:id', 'cf_info:size', 'cf_tag:desc']
#     Data(from Rdd):
#         e.g. data =[('row1',[1,3400,'hello']), ('row2',[34,5000,'here in mine'])],
#             cols = ['cf_info:id', 'cf_info:size', 'cf_tag:desc']
#     """
#     hconf = {
#         "hbase.zookeeper.quorum": "HPC-server, HPC, HPC2",  # "hbase.zookeeper.quorum": self.host,
#         "hbase.mapreduce.inputtable": table_name,
#         "hbase.mapred.outputtable": table_name,
#         "mapreduce.outputformat.class": hparams["outputFormatClass"],
#         "mapreduce.job.output.key.class": hparams["writeKeyClass"],
#         "mapreduce.job.output.value.class": hparams["writeValueClass"],
#     }
#     cols = [col.split(':') for col in columns]
#     if not fromrdd:
#         rdd_data = sc.parallelize(data)
#     else:
#         rdd_data = data
#
#     rdd_data.flatMap(lambda x: format_out(x, cols, withdata=withdata)).saveAsNewAPIHadoopDataset(
#         conf=hconf,
#         keyConverter=hparams["writeKeyConverter"],
#         valueConverter=hparams["writeValueConverter"])


class Sparker(object):
    def __init__(self, host='HPC-server', appname='NewPySparkApp', **kwargs):
        load_env()
        self.host = host
        self.appname = appname
        self.master = kwargs.get('master', 'spark://%s:7077' % self.host)
        self.conf = SparkConf()
        self.conf.setSparkHome(self.host) \
            .setMaster(self.master) \
            .setAppName(self.appname)

        # self.conf.set("spark.akka.frameSize","10685760")
        # self.conf.set("spark.driver.extraClassPath", extraClassPath) \
        # .set("spark.executor.extraClassPath", extraClassPath) \
        # .set("SPARK_CLASSPATH", extraClassPath) \
        # .set("spark.driver.memory", "1G") \
        # .set("spark.yarn.jar", sparkJar)

        self.sc = SparkContext(conf=self.conf)

        self.model = None


    def read_hbase(self, table_name, func=None, collect=False, parallelism=40):
        """
        ref - http://happybase.readthedocs.org/en/latest/user.html#retrieving-data

        Filter format:
0fbc087e   Chunk   staged.
351
            columns=['cf1:col1', 'cf1:col2']
a9c10957   Chunk   hbase-svm & spark...
352
353
354
355
356
            or
            columns=['cf1']

        """

018ebf56   Chunk   Spark Streaming T...
357
        hconf = {
a9c10957   Chunk   hbase-svm & spark...
358
            "hbase.zookeeper.quorum": "HPC-server, HPC, HPC2",
5ec38adb   Chunk   spark-local of da...
359
360
361
            # "hbase.zookeeper.quorum": self.host,
            "hbase.mapreduce.inputtable": table_name,
        }
a9c10957   Chunk   hbase-svm & spark...
362

018ebf56   Chunk   Spark Streaming T...
363
        hbase_rdd = self.sc.newAPIHadoopRDD(inputFormatClass=hparams["inputFormatClass"],
5ec38adb   Chunk   spark-local of da...
364
365
366
367
368
369
370
                                            keyClass=hparams["readKeyClass"],
                                            valueClass=hparams["readValueClass"],
                                            keyConverter=hparams["readKeyConverter"],
                                            valueConverter=hparams["readValueConverter"],
                                            conf=hconf)

        parser = func if func != None else rddparse_data_CV
a9c10957   Chunk   hbase-svm & spark...
371
372
373
        hbase_rdd = hbase_rdd.map(lambda x: parser(x))

        if collect:
f4fb4381   Chunk   staged.
374
            return hbase_rdd.collect()
a9c10957   Chunk   hbase-svm & spark...
375
376
377
378
379
380
381
382
383
        else:
            """
            RDD-hbase bug fixed.(with 'repartition()')
            <http://stackoverflow.com/questions/29011574/how-is-spark-partitioning-from-hdfs>

            When Spark reads a file from HDFS, it creates a single partition for a single input split. Input split is set by the Hadoop InputFormat used to read this file. For instance, if you use textFile() it would be TextInputFormat in Hadoop, which would return you a single partition for a single block of HDFS (but the split between partitions would be done on line split, not the exact block split), unless you have a compressed text file. In case of compressed file you would get a single partition for a single file (as compressed text files are not splittable).
            When you call rdd.repartition(x) it would perform a shuffle of the data from N partititons you have in rdd to x partitions you want to have, partitioning would be done on round robin basis.
            If you have a 30GB uncompressed text file stored on HDFS, then with the default HDFS block size setting (128MB) it would be stored in 235 blocks, which means that the RDD you read from this file would have 235 partitions. When you call repartition(1000) your RDD would be marked as to be repartitioned, but in fact it would be shuffled to 1000 partitions only when you will execute an action on top of this RDD (lazy execution concept)

3b4e250d   Chunk   staged.
384
            """
489c5608   Chunk   debugging...
385
            return hbase_rdd.repartition(parallelism)
54e2adda   Chunk   staged.
386
387
388

    def write_hbase(self, table_name, data, fromrdd=False, columns=None, withdata=False):
        """
d642d837   Chunk   staged.
389
        Data Format: (Deprecated)
a9c10957   Chunk   hbase-svm & spark...
390
391
392
393
394
395
396
            e.g. [["row8", "f1", "", "caocao cao"], ["row9", "f1", "c1", "asdfg hhhh"]]

        Data(from dictionary):
            e.g. data ={'row1':[1,3400,'hello'], 'row2':[34,5000,'here in mine']},
                cols = ['cf_info:id', 'cf_info:size', 'cf_tag:desc']
        Data(from Rdd):
            e.g. data =[('row1',[1,3400,'hello']), ('row2',[34,5000,'here in mine'])],
a9c10957   Chunk   hbase-svm & spark...
397
                cols = ['cf_info:id', 'cf_info:size', 'cf_tag:desc']
3b4e250d   Chunk   staged.
398
        """
ea1eb31a   Chunk   spark is privileg...
399
400
401
402
403
        hconf = {
            "hbase.zookeeper.quorum": "HPC-server, HPC, HPC2",  # "hbase.zookeeper.quorum": self.host,
            "hbase.mapreduce.inputtable": table_name,
            "hbase.mapred.outputtable": table_name,
            "mapreduce.outputformat.class": hparams["outputFormatClass"],
0a55c5f4   Chunk   staged.
404
405
406
407
408
409
410
411
412
            "mapreduce.job.output.key.class": hparams["writeKeyClass"],
            "mapreduce.job.output.value.class": hparams["writeValueClass"],
        }
        cols = [col.split(':') for col in columns]
        if not fromrdd:
            rdd_data = self.sc.parallelize(data)
        else:
            rdd_data = data

26616791   Chunk   RDD-hbase bug fix...
413
        rdd_data.flatMap(lambda x: format_out(x, cols, withdata=withdata)).saveAsNewAPIHadoopDataset(
ea1eb31a   Chunk   spark is privileg...
414
            conf=hconf,
d47ae6ce   Chunk   staged.
415
            keyConverter=hparams["writeKeyConverter"],
a9c10957   Chunk   hbase-svm & spark...
416
            valueConverter=hparams["writeValueConverter"])
0fbc087e   Chunk   staged.
417

a9c10957   Chunk   hbase-svm & spark...
418

0fbc087e   Chunk   staged.
419
420
421
422
423
424
425
    def train_svm(self, X, Y=None):

        if Y == None:
            # From rdd_labeled
            assert isinstance(X, RDD)
            svm = SVMWithSGD.train(X)
        else:
a9c10957   Chunk   hbase-svm & spark...
426
            # data = []
489c5608   Chunk   debugging...
427
            # for feat, tag in zip(X, Y):
ece71a0d   Chunk   Streaming! encodi...
428
            # data.append(LabeledPoint(tag, feat))
e3ec1f74   Chunk   staged.
429
            # svm = SVMWithSGD.train(self.sc.parallelize(data))
54e2adda   Chunk   staged.
430
431
432
433
434
            hdd_data = self.sc.parallelize(zip(X, Y), 20).map(lambda x: LabeledPoint(x[1], x[0]))
            svm = SVMWithSGD.train(hdd_data)
        self.model = svm
        # with open('res/svm_spark.model', 'wb') as modelfile:
        # model = pickle.dump(svm, modelfile)
d642d837   Chunk   staged.
435

0fbc087e   Chunk   staged.
436
437
438
        return self.model

    def predict_svm(self, x, collect=False, model=None):
3b4e250d   Chunk   staged.
439
440
        """
        From pyspark.mlib.classification.py:
a9c10957   Chunk   hbase-svm & spark...
441

ece71a0d   Chunk   Streaming! encodi...
442
443
            >> svm.predict([1.0])
            1
a9c10957   Chunk   hbase-svm & spark...
444
445
446
447
            >> svm.predict(sc.parallelize([[1.0]])).collect()
            [1]
            >> svm.clearThreshold()
            >> svm.predict(array([1.0]))
02528074   Chunk   staged.
448
            1.25...
10b4f63f   Chunk   staged. Before Pa...
449
        """
02528074   Chunk   staged.
450
451
452
453
454
455
456
457
458
        if model is None:
            if self.model != None:
                model = self.model
            else:
                # with open('res/svm_spark.model', 'rb') as modelfile:
                # model = pickle.load(modelfile)
                raise Exception("No model available!")

        res = model.predict(x)
f4fb4381   Chunk   staged.
459
        if collect:
02528074   Chunk   staged.
460
            return res.collect()
a9c10957   Chunk   hbase-svm & spark...
461
        else:
10b4f63f   Chunk   staged. Before Pa...
462
463
            return res

5ec38adb   Chunk   spark-local of da...
464
    def test_svm(self, X, Y=None, model=None):
02528074   Chunk   staged.
465
        if model is None:
a9c10957   Chunk   hbase-svm & spark...
466
            if self.model != None:
02528074   Chunk   staged.
467
468
469
470
471
472
473
474
475
476
477
478
                model = self.model
            else:
                # with open('res/svm_spark.model', 'rb') as modelfile:
                # model = pickle.load(modelfile)
                raise Exception("No model available!")

        if Y == None:
            assert isinstance(X, RDD)
            pass
        else:
            result_Y = np.array(self.predict_svm(X, collect=True))
            return np.mean(Y == result_Y)
a9c10957   Chunk   hbase-svm & spark...

10b4f63f   Chunk   staged. Before Pa...

a9c10957   Chunk   hbase-svm & spark...

02528074   Chunk   staged.

f20e20ce   Chunk   staged.

02528074   Chunk   staged.

a9c10957   Chunk   hbase-svm & spark...

02528074   Chunk   staged.