Blame view

mmodel/svm/svmutil.py 8.51 KB
a9c10957   Chunk   hbase-svm & spark...
1
2
3
4
#!/usr/bin/env python

import os
import sys
2bf33465   Chunk   staged.
5

66c71f34   Chunk   staged.
6
7
from ..svm.libsvm import *
from ..svm.libsvm import __all__ as svm_all
a9c10957   Chunk   hbase-svm & spark...
8
9
10
11
12
13
14


__all__ = ['evaluations', 'svm_load_model', 'svm_predict', 'svm_read_problem',
           'svm_save_model', 'svm_train'] + svm_all

sys.path = [os.path.dirname(os.path.abspath(__file__))] + sys.path

e3e7e73a   Chunk   spider standalone...
15
def svm_read_problem(data_file_name):
a9c10957   Chunk   hbase-svm & spark...
16
	"""
e3e7e73a   Chunk   spider standalone...
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
	svm_read_problem(data_file_name) -> [y, x]

	Read LIBSVM-format data from data_file_name and return labels y
	and data instances x.
	"""
	prob_y = []
	prob_x = []
	for line in open(data_file_name):
		line = line.split(None, 1)
		# In case an instance with all zero features
		if len(line) == 1: line += ['']
		label, features = line
		xi = {}
		for e in features.split():
			ind, val = e.split(":")
			xi[int(ind)] = float(val)
		prob_y += [float(label)]
		prob_x += [xi]
	return (prob_y, prob_x)

def svm_load_model(model_file_name):
a9c10957   Chunk   hbase-svm & spark...
38
39
	"""
	svm_load_model(model_file_name) -> model
e3e7e73a   Chunk   spider standalone...
40
41
42
43
44
45
46
47
48
49
50
51

	Load a LIBSVM model from model_file_name and return.
	"""
	model = libsvm.svm_load_model(model_file_name.encode())
	if not model:
		print("can't open model file %s" % model_file_name)
		return None
	model = toPyModel(model)
	return model

def svm_save_model(model_file_name, model):
	"""
a9c10957   Chunk   hbase-svm & spark...
52
53
	svm_save_model(model_file_name, model) -> None

e3e7e73a   Chunk   spider standalone...
54
55
56
57
58
59
	Save a LIBSVM model to the file model_file_name.
	"""
	libsvm.svm_save_model(model_file_name.encode(), model)

def evaluations(ty, pv):
	"""
a9c10957   Chunk   hbase-svm & spark...
60
	evaluations(ty, pv) -> (ACC, MSE, SCC)
a9c10957   Chunk   hbase-svm & spark...
61
62

	Calculate accuracy, mean squared error and squared correlation coefficient
e3e7e73a   Chunk   spider standalone...
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
	using the true values (ty) and predicted values (pv).
	"""
	if len(ty) != len(pv):
		raise ValueError("len(ty) must equal to len(pv)")
	total_correct = total_error = 0
	sumv = sumy = sumvv = sumyy = sumvy = 0
	for v, y in zip(pv, ty):
		if y == v:
			total_correct += 1
		total_error += (v-y)*(v-y)
		sumv += v
		sumy += y
		sumvv += v*v
		sumyy += y*y
		sumvy += v*y
	l = len(ty)
	ACC = 100.0*total_correct/l
	MSE = total_error/l
	try:
		SCC = ((l*sumvy-sumv*sumy)*(l*sumvy-sumv*sumy))/((l*sumvv-sumv*sumv)*(l*sumyy-sumy*sumy))
	except:
		SCC = float('nan')
	return (ACC, MSE, SCC)

def svm_train(arg1, arg2=None, arg3=None):
	"""
	svm_train(y, x [, options]) -> model | ACC | MSE
	svm_train(prob [, options]) -> model | ACC | MSE
	svm_train(prob, param) -> model | ACC| MSE
a9c10957   Chunk   hbase-svm & spark...
92
93

	Train an SVM model from data (y, x) or an svm_problem prob using
e3e7e73a   Chunk   spider standalone...
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
	'options' or an svm_parameter param.
	If '-v' is specified in 'options' (i.e., cross validation)
	either accuracy (ACC) or mean-squared error (MSE) is returned.
	options:
	    -s svm_type : set type of SVM (default 0)
	        0 -- C-SVC		(multi-class classification)
	        1 -- nu-SVC		(multi-class classification)
	        2 -- one-class SVM
	        3 -- epsilon-SVR	(regression)
	        4 -- nu-SVR		(regression)
	    -t kernel_type : set type of kernel function (default 2)
	        0 -- linear: u'*v
	        1 -- polynomial: (gamma*u'*v + coef0)^degree
	        2 -- radial basis function: exp(-gamma*|u-v|^2)
	        3 -- sigmoid: tanh(gamma*u'*v + coef0)
	        4 -- precomputed kernel (kernel values in training_set_file)
	    -d degree : set degree in kernel function (default 3)
	    -g gamma : set gamma in kernel function (default 1/num_features)
	    -r coef0 : set coef0 in kernel function (default 0)
	    -c cost : set the parameter C of C-SVC, epsilon-SVR, and nu-SVR (default 1)
	    -n nu : set the parameter nu of nu-SVC, one-class SVM, and nu-SVR (default 0.5)
	    -p epsilon : set the epsilon in loss function of epsilon-SVR (default 0.1)
	    -m cachesize : set cache memory size in MB (default 100)
	    -e epsilon : set tolerance of termination criterion (default 0.001)
	    -h shrinking : whether to use the shrinking heuristics, 0 or 1 (default 1)
	    -b probability_estimates : whether to train a SVC or SVR model for probability estimates, 0 or 1 (default 0)
	    -wi weight : set the parameter C of class i to weight*C, for C-SVC (default 1)
	    -v n: n-fold cross validation mode
	    -q : quiet mode (no outputs)
	"""
	prob, param = None, None
	if isinstance(arg1, (list, tuple)):
		assert isinstance(arg2, (list, tuple))
		y, x, options = arg1, arg2, arg3
		param = svm_parameter(options)
		prob = svm_problem(y, x, isKernel=(param.kernel_type == PRECOMPUTED))
	elif isinstance(arg1, svm_problem):
		prob = arg1
		if isinstance(arg2, svm_parameter):
			param = arg2
		else:
			param = svm_parameter(arg2)
	if prob == None or param == None:
		raise TypeError("Wrong types for the arguments")

	if param.kernel_type == PRECOMPUTED:
		for xi in prob.x_space:
			idx, val = xi[0].index, xi[0].value
			if xi[0].index != 0:
				raise ValueError('Wrong input format: first column must be 0:sample_serial_number')
			if val <= 0 or val > prob.n:
				raise ValueError('Wrong input format: sample_serial_number out of range')

	if param.gamma == 0 and prob.n > 0:
		param.gamma = 1.0 / prob.n
	libsvm.svm_set_print_string_function(param.print_func)
	err_msg = libsvm.svm_check_parameter(prob, param)
	if err_msg:
		raise ValueError('Error: %s' % err_msg)

	if param.cross_validation:
		l, nr_fold = prob.l, param.nr_fold
		target = (c_double * l)()
		libsvm.svm_cross_validation(prob, param, nr_fold, target)
		ACC, MSE, SCC = evaluations(prob.y[:l], target[:l])
		if param.svm_type in [EPSILON_SVR, NU_SVR]:
			print("Cross Validation Mean squared error = %g" % MSE)
			print("Cross Validation Squared correlation coefficient = %g" % SCC)
			return MSE
		else:
			print("Cross Validation Accuracy = %g%%" % ACC)
			return ACC
	else:
		m = libsvm.svm_train(prob, param)
		m = toPyModel(m)

		# If prob is destroyed, data including SVs pointed by m can remain.
		m.x_space = prob.x_space
		return m

def svm_predict(y, x, m, options=""):
	"""
	svm_predict(y, x, m [, options]) -> (p_labels, p_acc, p_vals)

	Predict data (y, x) with the SVM model m.
	options:
a9c10957   Chunk   hbase-svm & spark...
180
181
	    -b probability_estimates: whether to predict probability estimates,
	        0 or 1 (default 0); for one-class SVM only 0 is supported.
e3e7e73a   Chunk   spider standalone...
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
	    -q : quiet mode (no outputs).

	The return tuple contains
	p_labels: a list of predicted labels
	p_acc: a tuple including  accuracy (for classification), mean-squared
	       error, and squared correlation coefficient (for regression).
	p_vals: a list of decision values or probability estimates (if '-b 1'
	        is specified). If k is the number of classes, for decision values,
	        each element includes results of predicting k(k-1)/2 binary-class
	        SVMs. For probabilities, each element contains k values indicating
	        the probability that the testing instance is in each class.
	        Note that the order of classes here is the same as 'model.label'
	        field in the model structure.
	"""

	def info(s):
		print(s)

	predict_probability = 0
	argv = options.split()
	i = 0
	while i < len(argv):
		if argv[i] == '-b':
			i += 1
			predict_probability = int(argv[i])
		elif argv[i] == '-q':
			info = print_null
		else:
			raise ValueError("Wrong options")
		i+=1

	svm_type = m.get_svm_type()
	is_prob_model = m.is_probability_model()
	nr_class = m.get_nr_class()
	pred_labels = []
	pred_values = []

	if predict_probability:
		if not is_prob_model:
			raise ValueError("Model does not support probabiliy estimates")

		if svm_type in [NU_SVR, EPSILON_SVR]:
			info("Prob. model for test data: target value = predicted value + z,\n"
			"z: Laplace distribution e^(-|z|/sigma)/(2sigma),sigma=%g" % m.get_svr_probability());
			nr_class = 0

		prob_estimates = (c_double * nr_class)()
		for xi in x:
			xi, idx = gen_svm_nodearray(xi, isKernel=(m.param.kernel_type == PRECOMPUTED))
			label = libsvm.svm_predict_probability(m, xi, prob_estimates)
			values = prob_estimates[:nr_class]
			pred_labels += [label]
			pred_values += [values]
	else:
		if is_prob_model:
			info("Model supports probability estimates, but disabled in predicton.")
		if svm_type in (ONE_CLASS, EPSILON_SVR, NU_SVC):
			nr_classifier = 1
		else:
			nr_classifier = nr_class*(nr_class-1)//2
		dec_values = (c_double * nr_classifier)()
		for xi in x:
			xi, idx = gen_svm_nodearray(xi, isKernel=(m.param.kernel_type == PRECOMPUTED))
			label = libsvm.svm_predict_values(m, xi, dec_values)
			if(nr_class == 1):
				values = [1]
			else:
				values = dec_values[:nr_classifier]
			pred_labels += [label]
			pred_values += [values]

	ACC, MSE, SCC = evaluations(y, pred_labels)
	l = len(y)
	if svm_type in [EPSILON_SVR, NU_SVR]:
		info("Mean squared error = %g (regression)" % MSE)
		info("Squared correlation coefficient = %g (regression)" % SCC)
	else:
		info("Accuracy = %g%% (%d/%d) (classification)" % (ACC, int(l*ACC/100), l))

	return pred_labels, (ACC, MSE, SCC), pred_values
a9c10957   Chunk   hbase-svm & spark...