Blame view

mmodel/theano/THEANO.py 7.61 KB
84648488   Chunk   reverted.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
__author__ = 'chunk'

from ...mfeat import *
from ...mmodel import *
from ...mspark import SC
from ...common import *
from .theanoutil import *

import numpy as np
from sklearn import cross_validation


class ModelTHEANO(ModelBase):
    def __init__(self, toolset='cnn', sc=None):
        ModelBase.__init__(self)
        self.toolset = toolset
        self.sparker = sc
        self.model = None

    def _train_cnn(self, X, Y, learning_rate=0.1, n_epochs=200, nkerns=[20, 50, 50],
                   batch_size=200):
        X_train, X_test, Y_train, Y_test = cross_validation.train_test_split(X, Y, test_size=0.2, random_state=0)

        X_train, Y_train = np.array(X_train), np.array(Y_train)
        X_test, Y_test = np.array(X_test), np.array(Y_test)

        n_train_batches = X_train.shape[0] / batch_size
        n_test_batches = X_test.shape[0] / batch_size

        rng = np.random.RandomState("whoami")
        index = T.lscalar()
        x = T.matrix('x')
        y = T.ivector('y')

        ######################
        # BUILD ACTUAL MODEL #
        ######################
        print '... building the model'

        layer0_input = x.reshape((batch_size, 1, 304, 304))

        # Construct the first convolutional pooling layer:
        # filtering reduces the image size to (304-8+1 , 304-8+1) = (297, 297)
        # maxpooling reduces this further to (297/4, 297/4) = (74, 74)
        # 4D output tensor is thus of shape (batch_size, nkerns[0], 74, 74)
        layer0 = ConvPoolLayer(
            rng,
            input=layer0_input,
            image_shape=(batch_size, 1, 304, 304),
            filter_shape=(nkerns[0], 1, 8, 8),
            poolsize=(4, 4)
        )

        # Construct the second convolutional pooling layer
        # filtering reduces the image size to (74-8+1, 74-8+1) = (67, 67)
        # maxpooling reduces this further to (67/4, 67/4) = (16, 16)
        # 4D output tensor is thus of shape (batch_size, nkerns[1], 16, 16)
        layer1 = ConvPoolLayer(
            rng,
            input=layer0.output,
            image_shape=(batch_size, nkerns[0], 74, 74),
            filter_shape=(nkerns[1], nkerns[0], 8, 8),
            poolsize=(4, 4)
        )

        # Construct the third convolutional pooling layer
        # filtering reduces the image size to (16-5+1, 16-5+1) = (12, 12)
        # maxpooling reduces this further to (12/3, 12/3) = (4, 4)
        # 4D output tensor is thus of shape (batch_size, nkerns[2], 4, 4)
        layer2 = ConvPoolLayer(
            rng,
            input=layer1.output,
            image_shape=(batch_size, nkerns[0], 16, 16),
            filter_shape=(nkerns[2], nkerns[1], 5, 5),
            poolsize=(3, 3)
        )

        # the HiddenLayer being fully-connected, it operates on 2D matrices of
        # shape (batch_size, num_pixels) (i.e matrix of rasterized images).
        # This will generate a matrix of shape (batch_size, nkerns[2] * 4 * 4),
        # or (500, 50 * 4 * 4) = (500, 800) with the default values.
        layer3_input = layer2.output.flatten(2)
        # construct a fully-connected sigmoidal layer
        layer3 = HiddenLayer(
            rng,
            input=layer3_input,
            n_in=nkerns[2] * 4 * 4,
            n_out=500,
            activation=T.tanh
        )
        # classify the values of the fully-connected sigmoidal layer
        layer4 = LogisticRegression(input=layer3.output, n_in=500, n_out=2)

        # the cost we minimize during training is the NLL of the model
        cost = layer4.negative_log_likelihood(y)
        params = layer4.params + layer3.params + layer2.params + layer1.params + layer0.params
        grads = T.grad(cost, params)
        updates = [
            (param_i, param_i - learning_rate * grad_i)
            for param_i, grad_i in zip(params, grads)
        ]

        train_model = theano.function(
            [index],
            cost,
            updates=updates,
            givens={
                x: X_train[index * batch_size: (index + 1) * batch_size],
                y: Y_train[index * batch_size: (index + 1) * batch_size]
            }
        )

        test_model = theano.function(
            [index],
            layer4.errors(y),
            givens={
                x: X_test[index * batch_size: (index + 1) * batch_size],
                y: Y_test[index * batch_size: (index + 1) * batch_size]
            }
        )

        ###############
        # TRAIN MODEL #
        ###############
        print '... training'
        # early-stopping parameters
        patience = 10000  # look as this many examples regardless
        patience_increase = 2  # wait this much longer when a new best is found
        improvement_threshold = 0.995  # a relative improvement of this much is
        # considered significant
        validation_frequency = min(n_train_batches, patience / 2)
        # go through this many
        # minibatche before checking the network
        # on the validation set; in this case we
        # check every epoch

        best_validation_loss = np.inf
        best_iter = 0
        test_score = 0.
        start_time = time.clock()

        epoch = 0
        done_looping = False

        while (epoch < n_epochs) and (not done_looping):
            epoch = epoch + 1
            for minibatch_index in xrange(n_train_batches):

                iter = (epoch - 1) * n_train_batches + minibatch_index

                if iter % 100 == 0:
                    print 'training @ iter = ', iter
                cost_ij = train_model(minibatch_index)

                if (iter + 1) % validation_frequency == 0:

                    # compute zero-one loss on validation set
                    validation_losses = [test_model(i) for i in xrange(n_test_batches)]
                    this_validation_loss = np.mean(validation_losses)
                    print('epoch %i, minibatch %i/%i, validation error %f %%' %
                          (epoch, minibatch_index + 1, n_train_batches,
                           this_validation_loss * 100.))

                    # if we got the best validation score until now
                    if this_validation_loss < best_validation_loss:

                        # improve patience if loss improvement is good enough
                        if this_validation_loss < best_validation_loss * \
                                improvement_threshold:
                            patience = max(patience, iter * patience_increase)

                        # save best validation score and iteration number
                        best_validation_loss = this_validation_loss
                        best_iter = iter

                if patience <= iter:
                    done_looping = True
                    break

        end_time = time.clock()
        print('Optimization complete.')
        print('Best validation score of %f %% obtained at iteration %i, '
              'with test performance %f %%' %
              (best_validation_loss * 100., best_iter + 1, test_score * 100.))
        print >> sys.stderr, ('The code for file ' +
                              os.path.split(__file__)[1] +
                              ' ran for %.2fm' % ((end_time - start_time) / 60.))


    def train(self, X, Y):
        if self.toolset == 'cnn':
            return self._train_cnn(X, Y)
        else:
            raise Exception("Unknown toolset!")


    def predict(self, feat, model=None):
        if self.toolset == 'cnn':
            return self._predict_cnn(feat, model)
        else:
            raise Exception("Unknown toolset!")


    def test(self, X, Y, model=None):
        if self.toolset == 'cnn':
            return self._test_cnn(X, Y, model)
        else:
            raise Exception("Unknown toolset!")