1d19f0e7
Chunk
staged.
|
1
2
3
4
5
6
7
8
|
__author__ = 'chunk'
"""
Yun Q. Shi, et al - A Markov Process Based Approach to Effective Attacking JPEG Steganography
"""
import time
import math
import numpy as np
|
ca73c96f
Chunk
Transformed into ...
|
9
10
|
from .. import *
|
ca73c96f
Chunk
Transformed into ...
|
11
|
from ...mjpeg import Jpeg,colorMap
|
1d19f0e7
Chunk
staged.
|
12
|
from ...common import *
|
080c30c2
Chunk
F5 lib updated. I...
|
13
14
15
|
import csv
import json
|
1d19f0e7
Chunk
staged.
|
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
|
import pickle
import cv2
from sklearn import svm
base_dir = '/home/hadoop/data/HeadShoulder/'
class MPB(StegBase):
"""
Markov Process Based Steganalyasis Algo.
"""
def __init__(self):
StegBase.__init__(self, sample_key)
self.model = None
self.svm = None
def _get_trans_prob_mat_orig(self, ciq, T=4):
"""
Original!
Calculate Transition Probability Matrix.
|
080c30c2
Chunk
F5 lib updated. I...
|
38
|
:param ciq: jpeg DCT coeff matrix, 2-D numpy array of int16 (pre-abs)
|
1d19f0e7
Chunk
staged.
|
39
40
41
|
:param T: signed integer, usually 1~7
:return: TPM - 3-D tensor, numpy array of size (2*T+1, 2*T+1, 4)
"""
|
080c30c2
Chunk
F5 lib updated. I...
|
42
43
44
45
|
ciq = np.absolute(ciq).clip(0, T)
TPM = np.zeros((2 * T + 1, 2 * T + 1, 4), np.float64)
# Fh = np.diff(ciq, axis=-1)
# Fv = np.diff(ciq, axis=0)
|
1d19f0e7
Chunk
staged.
|
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
|
Fh = ciq[:-1, :-1] - ciq[:-1, 1:]
Fv = ciq[:-1, :-1] - ciq[1:, :-1]
Fd = ciq[:-1, :-1] - ciq[1:, 1:]
Fm = ciq[:-1, 1:] - ciq[1:, :-1]
Fh1 = Fh[:-1, :-1]
Fh2 = Fh[:-1, 1:]
Fv1 = Fv[:-1, :-1]
Fv2 = Fv[1:, :-1]
Fd1 = Fd[:-1, :-1]
Fd2 = Fd[1:, 1:]
Fm1 = Fm[:-1, 1:]
Fm2 = Fm[1:, :-1]
# original:(very slow!)
for n in range(-T, T + 1):
for m in range(-T, T + 1):
dh = np.sum(Fh1 == m) * 1.0
dv = np.sum(Fv1 == m) * 1.0
dd = np.sum(Fd1 == m) * 1.0
dm = np.sum(Fm1 == m) * 1.0
if dh != 0:
TPM[m, n, 0] = np.sum(np.logical_and(Fh1 == m, Fh2 == n)) / dh
if dv != 0:
TPM[m, n, 1] = np.sum(np.logical_and(Fv1 == m, Fv2 == n)) / dv
if dd != 0:
TPM[m, n, 2] = np.sum(np.logical_and(Fd1 == m, Fd2 == n)) / dd
if dm != 0:
TPM[m, n, 3] = np.sum(np.logical_and(Fm1 == m, Fm2 == n)) / dm
|
080c30c2
Chunk
F5 lib updated. I...
|
82
|
|
1d19f0e7
Chunk
staged.
|
83
84
85
86
87
88
89
90
91
|
# 1.422729s
return TPM
def get_trans_prob_mat(self, ciq, T=4):
"""
Calculate Transition Probability Matrix.
:param ciq: jpeg DCT coeff matrix, 2-D numpy array of int16 (pre-abs)
|
018ebf56
Chunk
Spark Streaming T...
|
92
|
:param T: signed integer, usually 1~7
|
1d19f0e7
Chunk
staged.
|
93
94
95
|
:return: TPM - 3-D tensor, numpy array of size (2*T+1, 2*T+1, 4)
"""
|
080c30c2
Chunk
F5 lib updated. I...
|
96
97
|
# return self._get_trans_prob_mat_orig(ciq, T)
|
1d19f0e7
Chunk
staged.
|
98
99
100
|
# timer = Timer()
ciq = np.absolute(ciq).clip(0, T)
|
080c30c2
Chunk
F5 lib updated. I...
|
101
102
103
104
105
106
107
108
109
110
|
TPM = np.zeros((2 * T + 1, 2 * T + 1, 4), np.float64)
# Fh = np.diff(ciq, axis=-1)
# Fv = np.diff(ciq, axis=0)
Fh = ciq[:-1, :-1] - ciq[:-1, 1:]
Fv = ciq[:-1, :-1] - ciq[1:, :-1]
Fd = ciq[:-1, :-1] - ciq[1:, 1:]
Fm = ciq[:-1, 1:] - ciq[1:, :-1]
Fh1 = Fh[:-1, :-1]
Fh2 = Fh[:-1, 1:]
|
1d19f0e7
Chunk
staged.
|
111
|
|
018ebf56
Chunk
Spark Streaming T...
|
112
113
|
Fv1 = Fv[:-1, :-1]
Fv2 = Fv[1:, :-1]
|
1d19f0e7
Chunk
staged.
|
114
|
|
018ebf56
Chunk
Spark Streaming T...
|
115
116
|
Fd1 = Fd[:-1, :-1]
Fd2 = Fd[1:, 1:]
|
1d19f0e7
Chunk
staged.
|
117
|
|
018ebf56
Chunk
Spark Streaming T...
|
118
119
|
Fm1 = Fm[:-1, 1:]
Fm2 = Fm[1:, :-1]
|
1d19f0e7
Chunk
staged.
|
120
|
|
018ebf56
Chunk
Spark Streaming T...
|
121
122
|
|
1d19f0e7
Chunk
staged.
|
123
124
125
126
127
128
129
130
131
132
133
|
# 0.089754s
# timer.mark()
# TPM[Fh1.ravel(), Fh2.ravel(), 0] += 1
# TPM[Fv1.ravel(), Fv2.ravel(), 1] += 1
# TPM[Fd1.ravel(), Fd2.ravel(), 2] += 1
# TPM[Fm1.ravel(), Fm2.ravel(), 3] += 1
# timer.report()
# 1.936746s
# timer.mark()
for m, n in zip(Fh1.ravel(), Fh2.ravel()):
|
018ebf56
Chunk
Spark Streaming T...
|
134
135
136
|
TPM[m, n, 0] += 1
for m, n in zip(Fv1.ravel(), Fv2.ravel()):
|
080c30c2
Chunk
F5 lib updated. I...
|
137
|
TPM[m, n, 1] += 1
|
018ebf56
Chunk
Spark Streaming T...
|
138
139
140
141
142
143
144
145
146
|
for m, n in zip(Fd1.ravel(), Fd2.ravel()):
TPM[m, n, 2] += 1
for m, n in zip(Fm1.ravel(), Fm2.ravel()):
TPM[m, n, 3] += 1
# timer.report()
# 0.057505s
|
1d19f0e7
Chunk
staged.
|
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
|
# timer.mark()
for m in range(-T, T + 1):
dh = np.sum(Fh1 == m) * 1.0
dv = np.sum(Fv1 == m) * 1.0
dd = np.sum(Fd1 == m) * 1.0
dm = np.sum(Fm1 == m) * 1.0
if dh != 0:
TPM[m, :, 0] /= dh
if dv != 0:
TPM[m, :, 1] /= dv
if dd != 0:
TPM[m, :, 2] /= dd
if dm != 0:
TPM[m, :, 3] /= dm
# timer.report()
return TPM
def load_dataset(self, mode, file):
if mode == 'local':
return self._load_dataset_from_local(file)
elif mode == 'remote' or mode == 'hbase':
return self._load_dataset_from_hbase(file)
else:
raise Exception("Unknown mode!")
def _load_dataset_from_local(self, list_file='images_map_Train.tsv'):
"""
load jpeg dataset according to a file of file-list.
:param list_file: a tsv file with each line for a jpeg file path
:return:(X,Y) for SVM
"""
|
1d19f0e7
Chunk
staged.
|
184
|
list_file = base_dir + list_file
|