be12257b
Chunk
data-feat-model f...
|
1
2
|
__author__ = 'chunk'
|
9371f8fa
Chunk
SVM param engenee...
|
3
|
from sklearn import cross_validation
|
f4fb4381
Chunk
staged.
|
4
|
|
2bf33465
Chunk
staged.
|
5
|
from ..common import *
|
84648488
Chunk
reverted.
|
6
|
from ..mdata import CV, ILSVRC, ILSVRC_S
|
61e78eb3
Chunk
staged.
|
7
|
from ..mmodel.svm import SVM
|
84648488
Chunk
reverted.
|
8
|
from ..mmodel.theano import THEANO
|
2bf33465
Chunk
staged.
|
9
|
|
5a469df5
Chunk
staged.
|
10
11
12
|
import gzip
import cPickle
|
84648488
Chunk
reverted.
|
13
|
|
5a469df5
Chunk
staged.
|
14
15
|
timer = Timer()
package_dir = os.path.dirname(os.path.abspath(__file__))
|
be12257b
Chunk
data-feat-model f...
|
16
|
|
d2603183
Chunk
staged.
|
17
|
|
84648488
Chunk
reverted.
|
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
|
def test_SVM_CV():
timer.mark()
dcv = CV.DataCV()
X, Y = dcv.load_data(mode='local') # 90.468586s -> 5.392520s
# X, Y = dcv.load_data(mode='hbase') # 21.682754s
# X, Y = dcv.load_data(mode='spark') # 29.549597s
timer.report()
timer.mark()
# msvm = SVM.ModelSVM(toolset='sklearn') # 3.030380s
# msvm = SVM.ModelSVM(toolset='opencv') # 8.939880s
# msvm = SVM.ModelSVM(toolset='libsvm') # 185.524023s
msvm = SVM.ModelSVM(toolset='spark')
msvm.train(X, Y)
timer.report()
timer.mark()
for path, subdirs, files in os.walk('data/467/'):
for name in files:
imgpath = os.path.join(path, name)
feat = dcv.get_feat(imgpath, 'hog')
print name, msvm.predict(feat)
timer.report()
timer.mark()
print msvm.test(X, Y) # 0.948892561983 for svm_cv, 0.989024793388 for svm_sk, 0.9900826446280992 for svm_lib
timer.report() # 27.421949s for svm_lib
|
d0be60e7
Chunk
jpeg update.
|
48
49
|
def test_SVM_ILSVRC():
timer.mark()
|
84648488
Chunk
reverted.
|
50
|
dil = ILSVRC.DataILSVRC(base_dir='/data/hadoop/ImageNet/ILSVRC/ILSVRC2013_DET_val', category='Train_5000_0.05_orig')
|
d0be60e7
Chunk
jpeg update.
|
51
|
X, Y = dil.load_data(mode='local') #
|
02528074
Chunk
staged.
|
52
53
|
# X, Y = dil.load_data(mode='hbase') #
# X, Y = dil.load_data(mode='spark') #
|
84648488
Chunk
reverted.
|
54
|
X_train, X_test, Y_train, Y_test = cross_validation.train_test_split(X, Y, test_size=0.4, random_state=0)
|
6d6d75b8
Chunk
spider LOG system.
|
55
|
print np.array(Y).shape, np.array(X).shape
|
02528074
Chunk
staged.
|
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
|
print np.array(X_train).shape, np.array(Y_train).shape
print np.array(X_test).shape, np.array(Y_test).shape
timer.report()
timer.mark()
msvm = SVM.ModelSVM(toolset='sklearn') # 4.884247s 0.777853030816
# msvm = SVM.ModelSVM(toolset='opencv') #
# msvm = SVM.ModelSVM(toolset='libsvm') #
# msvm = SVM.ModelSVM(toolset='spark')
msvm.train(X_train, Y_train)
timer.report()
timer.mark()
print msvm.test(X_test, Y_test) #
timer.report() #
# timer.mark()
# print 'or like this:'
# scores = cross_validation.cross_val_score(msvm.model, X, Y)
# print scores
# timer.report()
def test_SVM_ILSVRC_HBASE():
timer.mark()
# dil = ILSVRC.DataILSVRC(base_dir='ILSVRC2013_DET_val', category='Train_3')
# X, Y = dil.load_data(mode='hbase') # pass
|
4f36b116
Chunk
staged.
|
86
|
dils = ILSVRC_S.DataILSVRC_S(base='ILSVRC2013_DET_val', category='Test_1')
|
02528074
Chunk
staged.
|
87
|
X, Y = dils.load_data(mode='hbase') # pass
|
9371f8fa
Chunk
SVM param engenee...
|
88
|
|
51708346
Chunk
final experiments...
|
89
90
|
dil = ILSVRC.DataILSVRC(base_dir='/data/hadoop/ImageNet/ILSVRC/ILSVRC2013_DET_val', category='Test_1')
X1, Y1 = dil.load_data(mode='local')
|
2bd3da3e
Chunk
staged.
|
91
|
|
84648488
Chunk
reverted.
|
92
|
X_train, X_test, Y_train, Y_test = cross_validation.train_test_split(X, Y, test_size=0.4, random_state=0)
|
d2603183
Chunk
staged.
|
93
|
print Y, np.sum(np.array(Y) == 0), np.sum(np.array(Y) == 1)
|
02528074
Chunk
staged.
|
94
|
print np.array(Y).shape, np.array(X).shape
|
9371f8fa
Chunk
SVM param engenee...
|
95
96
97
|
print np.array(X_train).shape, np.array(Y_train).shape
print np.array(X_test).shape, np.array(Y_test).shape
|
d0be60e7
Chunk
jpeg update.
|
98
99
100
|
timer.report()
timer.mark()
|
4f36b116
Chunk
staged.
|
101
|
msvm = SVM.ModelSVM(toolset='sklearn') # 4.884247s 0.777853030816
|
51708346
Chunk
final experiments...
|
102
|
# msvm = SVM.ModelSVM(toolset='opencv') #
|
9371f8fa
Chunk
SVM param engenee...
|
103
|
# msvm = SVM.ModelSVM(toolset='libsvm') #
|
4f36b116
Chunk
staged.
|
104
|
# msvm = SVM.ModelSVM(toolset='spark')
|
9371f8fa
Chunk
SVM param engenee...
|
105
|
msvm.train(X_train, Y_train)
|
d0be60e7
Chunk
jpeg update.
|
106
107
108
|
timer.report()
timer.mark()
|
9371f8fa
Chunk
SVM param engenee...
|
109
|
print msvm.test(X_test, Y_test) #
|
d0be60e7
Chunk
jpeg update.
|
110
|
timer.report() #
|
6d6d75b8
Chunk
spider LOG system.
|
111
|
|
51708346
Chunk
final experiments...
|
112
113
114
115
|
timer.mark()
print msvm.test(X1, Y1) #
timer.report() #
# timer.mark()
|
e3e7e73a
Chunk
spider standalone...
|
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
|
# print 'or like this:'
# scores = cross_validation.cross_val_score(msvm.model, X, Y)
# print scores
# timer.report()
def test_SVM_ILSVRC_SPARK():
timer.mark()
dils = ILSVRC_S.DataILSVRC_S(base='ILSVRC2013_DET_val', category='Test_1')
rdd_dataset = dils.load_data(mode='spark') # pass
timer.report()
timer.mark()
# msvm = SVM.ModelSVM(toolset='sklearn') #
# msvm = SVM.ModelSVM(toolset='opencv') #
# msvm = SVM.ModelSVM(toolset='libsvm') #
msvm = SVM.ModelSVM(toolset='spark', sc=dils.sparker)
msvm.train(rdd_dataset)
|
2bd3da3e
Chunk
staged.
|
135
|
timer.report()
|
02528074
Chunk
staged.
|
136
137
138
139
140
141
142
143
144
|
dataset = rdd_dataset.collect()
length = len(dataset)
X_test, Y_test = [dataset[i].features for i in range(length)], [dataset[i].label for i in range(length)]
timer.mark()
print msvm.test(dils.sparker.sc.parallelize(X_test), Y_test) #
timer.report() #
|
f4fb4381
Chunk
staged.
|
145
146
147
148
|
def test_SVM_ILSVRC_S():
test_SVM_ILSVRC_HBASE()
|
02528074
Chunk
staged.
|
149
150
|
# test_SVM_ILSVRC_SPARK()
|
9371f8fa
Chunk
SVM param engenee...
|
151
|
|
02528074
Chunk
staged.
|
152
153
154
155
156
|
def test_THEANO_mnist():
mtheano = THEANO.ModelTHEANO(toolset='cnn')
mtheano._train_cnn(learning_rate=0.1, n_epochs=200, dataset=os.path.join(package_dir, '../res/', 'mnist.pkl.gz'), nkerns=[20, 50], batch_size=500)
|
9371f8fa
Chunk
SVM param engenee...
|
157
158
|
def test_THEANO_crop():
timer.mark()
|
02528074
Chunk
staged.
|
159
160
161
|
dilc = ILSVRC.DataILSVRC(base_dir='/data/hadoop/ImageNet/ILSVRC/ILSVRC2013_DET_val', category='Train_5000_crop_pil')
X, Y = dilc.load_data(mode='local', feattype='coef')
print X[0],Y
|
84648488
Chunk
reverted.
|
162
|
timer.report()
|
02528074
Chunk
staged.
|
163
164
165
166
167
168
169
|
# X_train, X_test, Y_train, Y_test = cross_validation.train_test_split(X, Y, test_size=0.2, random_state=0)
# with open(os.path.join(package_dir,'../res/','ils_crop.pkl'),'wb') as f:
# cPickle.dump([(X_train,Y_train),(X_test,Y_test)], f)
timer.mark()
mtheano = THEANO.ModelTHEANO(toolset='cnn')
|
51708346
Chunk
final experiments...
|
170
171
|
mtheano._train_cnn(X, Y)
timer.report()
|
02528074
Chunk
staged.
|
172
|
|
9371f8fa
Chunk
SVM param engenee...
|
173
|
|
84648488
Chunk
reverted.
|
174
175
176
177
|
if __name__ == '__main__':
# test_SVM_CV()
test_SVM_ILSVRC()
print 'helllo'
|
be12257b
Chunk
data-feat-model f...
|
|
|
d0be60e7
Chunk
jpeg update.
|
|
|
be12257b
Chunk
data-feat-model f...
|
|
|
84648488
Chunk
reverted.
|
|
|