Blame view

mdata/ILSVRC.py 18.1 KB
2c2d57c7   Chunk   ILSVRC datapath h...
1
2
3
__author__ = 'chunk'

from . import *
84648488   Chunk   reverted.
4
from ..mfeat import HOG, IntraBlockDiff
2c2d57c7   Chunk   ILSVRC datapath h...
5
6
7
8
9
10
11
12
13
14
15
16
17
18
from ..mspark import SC
from ..common import *

import os, sys
from PIL import Image
from hashlib import md5
import csv
import shutil
import json
import collections
import happybase

from ..mjpeg import *
from ..msteg import *
9ff70cf4   Chunk   capacity engeneer...
19
from ..msteg.steganography import LSB, F3, F4, F5
2c2d57c7   Chunk   ILSVRC datapath h...
20

d1042d03   Chunk   staged.
21
22
23
24
import numpy as np
from numpy.random import randn
import pandas as pd
from scipy import stats
ec755e37   Chunk   cropping.
25
import random
d1042d03   Chunk   staged.
26

080c30c2   Chunk   F5 lib updated. I...
27
28
from subprocess import Popen, PIPE, STDOUT

84648488   Chunk   reverted.
29

d1042d03   Chunk   staged.
30
31
np.random.seed(sum(map(ord, "whoami")))

080c30c2   Chunk   F5 lib updated. I...
32
33
package_dir = os.path.dirname(os.path.abspath(__file__))

2c2d57c7   Chunk   ILSVRC datapath h...
34
35

class DataILSVRC(DataDumperBase):
84648488   Chunk   reverted.
36
    def __init__(self, base_dir='/media/chunk/Elements/D/data/ImageNet/img/ILSVRC2013_DET_val', category='Train'):
2c2d57c7   Chunk   ILSVRC datapath h...
37
38
39
40
41
42
43
44
45
46
47
48
49
50
        DataDumperBase.__init__(self, base_dir, category)

        self.base_dir = base_dir
        self.category = category
        self.data_dir = os.path.join(self.base_dir, self.category)

        self.dst_dir = os.path.join(self.base_dir, 'dst', self.category)
        self.list_file = os.path.join(self.dst_dir, 'file-tag.tsv')
        self.feat_dir = os.path.join(self.dst_dir, 'Feat')
        self.img_dir = os.path.join(self.dst_dir, 'Img')

        self.dict_data = {}

        self.table_name = self.base_dir.strip('/').split('/')[-1] + '-' + self.category
02528074   Chunk   staged.
51
        self.sparker = None
2c2d57c7   Chunk   ILSVRC datapath h...
52
53

    def format(self):
f1fa5b17   Chunk   review & streaming.
54
        self.extract()
2c2d57c7   Chunk   ILSVRC datapath h...
55
56
57
58
59

    def _hash_copy(self, image):
        if not image.endswith('jpg'):
            img = Image.open(image)
            img.save('../res/tmp.jpg', format='JPEG')
080c30c2   Chunk   F5 lib updated. I...
60
61
            image = '../res/tmp.jpg'

2c2d57c7   Chunk   ILSVRC datapath h...
62
63
64
65
66
        with open(image, 'rb') as f:
            index = md5(f.read()).hexdigest()

        im = Jpeg(image, key=sample_key)
        self.dict_data[index] = [im.image_width, im.image_height, im.image_width * im.image_height, im.getCapacity(),
84648488   Chunk   reverted.
67
                                 im.getQuality()]
9ff70cf4   Chunk   capacity engeneer...
68

d0be60e7   Chunk   jpeg update.
69
70
        # self.dict_data[index] = [im.image_width, im.image_height, os.path.getsize(image), im.getQuality()]

2c2d57c7   Chunk   ILSVRC datapath h...
71
72
        # origion:
        # dir = base + 'Img/Train/' + index[:3]
1dc7c44b   Chunk   crawler-hbase-spa...
73
        dir = os.path.join(self.img_dir, index[:3])
2c2d57c7   Chunk   ILSVRC datapath h...
74
75
76
77
78
79
80
81
82
83
84
        if not os.path.exists(dir):
            os.makedirs(dir)
        image_path = os.path.join(dir, index[3:] + '.jpg')
        # print image_path

        if not os.path.exists(image_path):
            shutil.copy(image, image_path)
        else:
            pass

    def get_feat(self, image, feattype='ibd', **kwargs):
554a7b9a   Chunk   staged.
85
        size = kwargs.get('size', (48, 48))
84648488   Chunk   reverted.
86
87
88
89
90

        if feattype == 'hog':
            feater = HOG.FeatHOG(size=size)
        elif feattype == 'ibd':
            feater = IntraBlockDiff.FeatIntraBlockDiff()
554a7b9a   Chunk   staged.
91
92
93
94
95
96
97
98
        else:
            raise Exception("Unknown feature type!")

        desc = feater.feat(image)

        return desc


84648488   Chunk   reverted.
99
    def extract_feat(self, feattype='ibd'):
554a7b9a   Chunk   staged.
100
        if feattype == 'hog':
f1fa5b17   Chunk   review & streaming.
101
            feater = HOG.FeatHOG(size=(48, 48))
84648488   Chunk   reverted.
102
103
104
        elif feattype == 'ibd':
            feater = IntraBlockDiff.FeatIntraBlockDiff()
        else:
554a7b9a   Chunk   staged.
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
            raise Exception("Unknown feature type!")

        list_image = []
        with open(self.list_file, 'rb') as tsvfile:
            tsvfile = csv.reader(tsvfile, delimiter='\t')
            for line in tsvfile:
                list_image.append(line[0])

        dict_featbuf = {}
        for imgname in list_image:
            # if imgtag == 'True':
            image = os.path.join(self.img_dir, imgname[:3], imgname[3:] + '.jpg')
            desc = feater.feat(image)
            dict_featbuf[imgname] = desc

        for imgname, desc in dict_featbuf.items():
            # print imgname, desc
            dir = os.path.join(self.feat_dir, imgname[:3])
            if not os.path.exists(dir):
                os.makedirs(dir)
            featpath = os.path.join(dir, imgname[3:].split('.')[0] + '.' + feattype)
            with open(featpath, 'wb') as featfile:
                featfile.write(json.dumps(desc.tolist()))

    def _build_list(self, list_file=None):
        if list_file == None:
080c30c2   Chunk   F5 lib updated. I...
131
132
133
134
            list_file = self.list_file
        assert list_file != None

        ordict_img = collections.OrderedDict(sorted(self.dict_data.items(), key=lambda d: d[0]))
2c2d57c7   Chunk   ILSVRC datapath h...
135
136
137

        with open(list_file, 'w') as f:
            tsvfile = csv.writer(f, delimiter='\t')
080c30c2   Chunk   F5 lib updated. I...
138
            for key, value in ordict_img.items():
2c2d57c7   Chunk   ILSVRC datapath h...
139
140
141
142
                tsvfile.writerow([key] + value)

    def _anaylis(self, list_file=None):
        if list_file == None:
080c30c2   Chunk   F5 lib updated. I...
143
144
145
146
147
            list_file = self.list_file
        assert list_file != None

        df_ILS = pd.read_csv(list_file, names=['hash', 'width', 'height', 'size', 'capacity', 'quality'], sep='\t')
        length = df_ILS.shape[0]
84648488   Chunk   reverted.
148
        df_ILS = df_ILS.sort(['capacity', 'size', 'quality'], ascending=True)
d1042d03   Chunk   staged.
149
        rand_class = stats.bernoulli.rvs(0.8, size=length)
9ff70cf4   Chunk   capacity engeneer...
150

9371f8fa   Chunk   SVM param engenee...
151
        df_ILS['rate'] = np.zeros(df_ILS.shape[0], np.float64)
d1042d03   Chunk   staged.
152
        df_ILS['chosen'] = rand_class
9ff70cf4   Chunk   capacity engeneer...
153
        df_ILS['class'] = np.zeros(length, np.int32)
d0be60e7   Chunk   jpeg update.
154
155

        df_ILS.to_csv(list_file, header=False, index=False, sep='\t')
d1042d03   Chunk   staged.
156

d0be60e7   Chunk   jpeg update.
157
    def extract(self):
2c2d57c7   Chunk   ILSVRC datapath h...
158
159
        for path, subdirs, files in os.walk(self.data_dir):
            for name in files:
f1fa5b17   Chunk   review & streaming.
160
                imagepath = os.path.join(path, name)
2c2d57c7   Chunk   ILSVRC datapath h...
161
162
163
                # print imagepath
                try:
                    self._hash_copy(imagepath)
d1042d03   Chunk   staged.
164
165
166
167
168
                except:
                    pass

        self._build_list()
        self._anaylis()
2c2d57c7   Chunk   ILSVRC datapath h...
169

d1042d03   Chunk   staged.
170
171

    def _embed_outer(self):
2c2d57c7   Chunk   ILSVRC datapath h...
172
        self.dict_data = {}
84648488   Chunk   reverted.
173
        dict_embedresult = {}
9ff70cf4   Chunk   capacity engeneer...
174
        os.environ["CLASSPATH"] = os.path.join(package_dir, "../libs/F5/")
080c30c2   Chunk   F5 lib updated. I...
175
176
177
        cmd = 'java Embed %s %s -e %s  -p password -c "stegan by chunk  " -q %d'

        df_ILS = pd.read_csv(self.list_file,
d0be60e7   Chunk   jpeg update.
178
                             names=['hash', 'width', 'height', 'size', 'capacity', 'quality', 'chosen', 'class'],
080c30c2   Chunk   F5 lib updated. I...
179
                             sep='\t')
9ff70cf4   Chunk   capacity engeneer...
180
        df_ILS_TARGET = df_ILS[df_ILS['chosen'] == 1]
84648488   Chunk   reverted.
181

080c30c2   Chunk   F5 lib updated. I...
182
        for hash, size, quality in zip(df_ILS_TARGET['hash'], df_ILS_TARGET['size'], df_ILS_TARGET['quality']):
d0be60e7   Chunk   jpeg update.
183
            path_img = os.path.join(self.img_dir, hash[:3], hash[3:] + '.jpg')
9ff70cf4   Chunk   capacity engeneer...
184
            if path_img:
84648488   Chunk   reverted.
185
                print path_img
d0be60e7   Chunk   jpeg update.
186
                p = Popen(cmd % (path_img, 'res/tmp.jpg', 'res/toembed', quality), shell=True, stdout=PIPE,
080c30c2   Chunk   F5 lib updated. I...
187
188
                          stderr=STDOUT)
                dict_embedresult[hash] = [line.strip('\n') for line in p.stdout.readlines()]
84648488   Chunk   reverted.
189
                try:
9ff70cf4   Chunk   capacity engeneer...
190
                    self._hash_copy('res/tmp.jpg')
d0be60e7   Chunk   jpeg update.
191
                except:
080c30c2   Chunk   F5 lib updated. I...
192
193
194
195
                    pass

        with open(self.list_file + '.embed.log', 'wb') as f:
            tsvfile = csv.writer(f, delimiter='\t')
9ff70cf4   Chunk   capacity engeneer...
196
            for key, value in dict_embedresult.items():
080c30c2   Chunk   F5 lib updated. I...
197
198
199
200
201
                tsvfile.writerow([key] + value)

        self._build_list(self.list_file + '.embed')

        # merge
080c30c2   Chunk   F5 lib updated. I...
202
203
        df_ILS_EMBED = pd.read_csv(self.list_file + '.embed', names=['hash', 'width', 'height', 'size', 'quality'],
                                   sep='\t')
d0be60e7   Chunk   jpeg update.
204
        length = df_ILS_EMBED.shape[0]
84648488   Chunk   reverted.
205
        df_ILS_EMBED = df_ILS_EMBED.sort(['size', 'quality'], ascending=True)
d0be60e7   Chunk   jpeg update.
206
207
208
209
210
211
212
213
        df_ILS_EMBED['chosen'] = np.zeros(length, np.int32)
        df_ILS_EMBED['class'] = np.ones(length, np.int32)

        df_ILS = df_ILS.append(df_ILS_EMBED, ignore_index=True)
        df_ILS.to_csv(self.list_file, header=False, index=False, sep='\t')

    def _embed_inner(self, rate=None):
        self.dict_data = {}
080c30c2   Chunk   F5 lib updated. I...
214
        f5 = F5.F5(sample_key, 1)
9ff70cf4   Chunk   capacity engeneer...
215
216
217
218
219
        tmp_img = os.path.join(package_dir, '../res/tmp.jpg')
        df_ILS = pd.read_csv(self.list_file,
                             names=['hash', 'width', 'height', 'size', 'capacity', 'quality', 'rate', 'chosen',
                                    'class'],
                             sep='\t')
84648488   Chunk   reverted.
220
        df_ILS_TARGET = df_ILS[df_ILS['chosen'] == 1]
9ff70cf4   Chunk   capacity engeneer...
221
222
223
224
225
226
227
228
229

        for hash, capacity in zip(df_ILS_TARGET['hash'], df_ILS_TARGET['capacity']):
            path_img = os.path.join(self.img_dir, hash[:3], hash[3:] + '.jpg')
            if path_img:
                print path_img
                if rate == None:
                    embed_rate = f5.embed_raw_data(path_img, os.path.join(package_dir, '../res/toembed'), tmp_img)
                else:
                    assert (rate >= 0 and rate < 1)
84648488   Chunk   reverted.
230
                    # print capacity
9ff70cf4   Chunk   capacity engeneer...
231
232
                    hidden = np.random.bytes(int(capacity * rate) / 8)
                    embed_rate = f5.embed_raw_data(path_img, hidden, tmp_img, frommem=True)
9371f8fa   Chunk   SVM param engenee...
233
                try:
9ff70cf4   Chunk   capacity engeneer...
234
235
236
237
238
239
                    with open(tmp_img, 'rb') as f:
                        index = md5(f.read()).hexdigest()
                    im = Jpeg(tmp_img, key=sample_key)
                    self.dict_data[index] = [im.image_width, im.image_height, im.image_width * im.image_height,
                                             im.getCapacity(),
                                             im.getQuality(), embed_rate]
84648488   Chunk   reverted.
240

9ff70cf4   Chunk   capacity engeneer...
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
                    dir = os.path.join(self.img_dir, index[:3])
                    if not os.path.exists(dir):
                        os.makedirs(dir)
                    image_path = os.path.join(dir, index[3:] + '.jpg')
                    if not os.path.exists(image_path):
                        shutil.copy(tmp_img, image_path)
                    else:
                        pass
                except:
                    pass

        self._build_list(self.list_file + '.embed')

        # merge
        df_ILS_EMBED = pd.read_csv(self.list_file + '.embed',
                                   names=['hash', 'width', 'height', 'size', 'capacity', 'quality', 'rate'],
                                   sep='\t')

84648488   Chunk   reverted.
259
        df_ILS_EMBED = df_ILS_EMBED.sort(['rate', 'capacity', 'size', 'quality'], ascending=True)
9ff70cf4   Chunk   capacity engeneer...
260
261
262
263
264
265
266
267
268
269
270
271
        df_ILS_EMBED['chosen'] = np.zeros(df_ILS_EMBED.shape[0], np.int32)
        df_ILS_EMBED['class'] = np.ones(df_ILS_EMBED.shape[0], np.int32)

        # print df_ILS_EMBED.dtypes
        # print df_ILS.dtypes
        # Form the intersection of two Index objects. Sortedness of the result is not guaranteed
        df_ILS = df_ILS.append(df_ILS_EMBED, ignore_index=True)
        df_ILS.to_csv(self.list_file, header=False, index=False, sep='\t')

    def embed(self, rate=None):
        self._embed_inner(rate)

554a7b9a   Chunk   staged.
272

f1fa5b17   Chunk   review & streaming.
273
    def crop(self, size=(300, 300)):
9371f8fa   Chunk   SVM param engenee...
274
        for path, subdirs, files in os.walk(self.data_dir):
9ff70cf4   Chunk   capacity engeneer...
275
            for name in files:
84648488   Chunk   reverted.
276
                image = os.path.join(path, name)
ec755e37   Chunk   cropping.
277
                print image
e6be6b61   Chunk   import caffe.
278
279
280

                W, H = size
                try:
ec755e37   Chunk   cropping.
281
282
283
284
285
286
287
288
                    im = Image.open(image)
                    w, h = im.size
                    if w < W or h < H:
                        continue
                    left, upper = random.randint(0, w - W), random.randint(0, h - H)
                    im = im.crop((left, upper, left + W, upper + H))
                    im.save(os.path.join(self.data_dir + '_crop_pil', name))
                except Exception as e:
b9990e77   Chunk   staged.
289
                    print '[EXCPT]', e
ec755e37   Chunk   cropping.
290
291
292
293
294
                    pass

                    # try:
                    # img = cv2.imread(image, cv2.CV_LOAD_IMAGE_UNCHANGED)
                    #     h, w = img.shape[:2]
e6be6b61   Chunk   import caffe.
295
                    #     if w < 300 or h < 300:
ec755e37   Chunk   cropping.
296
297
298
299
300
301
                    #         continue
                    #     left, upper = random.randint(0, w - 300), random.randint(0, h - 300)
                    #     img_crop = img[upper:upper + 300, left:left + 300]
                    #     cv2.imwrite(os.path.join(base_dir, category + '_crop_cv', name), img_crop)
                    # except Exception as e:
                    #     print '[EXCPT]', e
b9990e77   Chunk   staged.
302
303
                    #     pass

25c0c9c9   Chunk   feat.ravel()[[i*3...
304

e6be6b61   Chunk   import caffe.
305
    def get_table(self):
bde8352b   Chunk   shuffling.
306
307
        if self.table != None:
            return self.table
ec755e37   Chunk   cropping.
308

bde8352b   Chunk   shuffling.
309
        if self.connection is None:
ec755e37   Chunk   cropping.
310
311
            c = happybase.Connection('HPC-server')
            self.connection = c
84648488   Chunk   reverted.
312

2c2d57c7   Chunk   ILSVRC datapath h...
313
        tables = self.connection.tables()
f1fa5b17   Chunk   review & streaming.
314
        if self.table_name not in tables:
2c2d57c7   Chunk   ILSVRC datapath h...
315
316
317
318
319
320
321
322
323
            families = {'cf_pic': dict(),
                        'cf_info': dict(max_versions=10),
                        'cf_tag': dict(),
                        'cf_feat': dict(),
                        }
            self.connection.create_table(name=self.table_name, families=families)

        table = self.connection.table(name=self.table_name)

f4fb4381   Chunk   staged.
324
325
326
327
328
        self.table = table

        return table

    def delete_table(self, table_name=None, disable=True):
2c2d57c7   Chunk   ILSVRC datapath h...
329
330
331
332
333
        if table_name == None:
            table_name = self.table_name

        if self.connection is None:
            c = happybase.Connection('HPC-server')
51708346   Chunk   final experiments...
334
            self.connection = c
2c2d57c7   Chunk   ILSVRC datapath h...
335
336
337
338
339
340
341

        tables = self.connection.tables()
        if table_name not in tables:
            return False
        else:
            try:
                self.connection.delete_table(table_name, disable)
d47ae6ce   Chunk   staged.
342
            except:
f1fa5b17   Chunk   review & streaming.
343
                print 'Exception when deleting table.'
d47ae6ce   Chunk   staged.
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
                raise
        return True

    def store_img(self):
        if self.table == None:
            self.table = self.get_table()

        dict_databuf = {}

        with open(self.list_file, 'rb') as tsvfile:
            tsvfile = csv.reader(tsvfile, delimiter='\t')
            for line in tsvfile:
                path_img = os.path.join(self.img_dir, line[0][:3], line[0][3:] + '.jpg')
                if path_img:
                    with open(path_img, 'rb') as fpic:
                        dict_databuf[line[0] + '.jpg'] = fpic.read()

2c2d57c7   Chunk   ILSVRC datapath h...
361
        try:
ad70caf6   Chunk   staged.
362
            with self.table.batch(batch_size=2000) as b:
2c2d57c7   Chunk   ILSVRC datapath h...
363
364
365
366
367
368
369
370
371
                for imgname, imgdata in dict_databuf.items():
                    b.put(imgname, {'cf_pic:data': imgdata})
        except ValueError:
            raise


    def store_info(self, infotype='all'):
        if self.table == None:
            self.table = self.get_table()
24768a99   Chunk   mode 'hbase' fini...
372

2c2d57c7   Chunk   ILSVRC datapath h...
373
374
375
376
        dict_infobuf = {}

        with open(self.list_file, 'rb') as tsvfile:
            tsvfile = csv.reader(tsvfile, delimiter='\t')
489c5608   Chunk   debugging...
377
            for line in tsvfile:
2c2d57c7   Chunk   ILSVRC datapath h...
378
379
380
381
                dict_infobuf[line[0] + '.jpg'] = line[1:-2]

        if infotype == 'all':
            try:
2c2d57c7   Chunk   ILSVRC datapath h...
382
                with self.table.batch(batch_size=5000) as b:
84648488   Chunk   reverted.
383
                    for imgname, imginfo in dict_infobuf.items():
cb798a7f   Chunk   libs & scripts in...
384
385
386
387
388
389
390
391
392
                        b.put(imgname,
                              {'cf_info:width': imginfo[0], 'cf_info:height': imginfo[1], 'cf_info:size': imginfo[2],
                               'cf_info:capacity': imginfo[3],
                               'cf_info:quality': imginfo[4]})
            except ValueError:
                raise
        else:
            raise Exception("Unknown infotype!")

080c30c2   Chunk   F5 lib updated. I...
393

cb798a7f   Chunk   libs & scripts in...
394
395
396
397
398
399
    def store_tag(self, tagtype='all'):
        if self.table == None:
            self.table = self.get_table()

        dict_tagbuf = {}

84648488   Chunk   reverted.
400
        with open(self.list_file, 'rb') as tsvfile:
554a7b9a   Chunk   staged.
401
402
            tsvfile = csv.reader(tsvfile, delimiter='\t')
            for line in tsvfile:
cb798a7f   Chunk   libs & scripts in...
403
404
                dict_tagbuf[line[0] + '.jpg'] = line[-2:]

cb798a7f   Chunk   libs & scripts in...
405
        if tagtype == 'all':
080c30c2   Chunk   F5 lib updated. I...
406
            try:
cb798a7f   Chunk   libs & scripts in...
407
                with self.table.batch(batch_size=5000) as b:
84648488   Chunk   reverted.
408
                    for imgname, imgtag in dict_tagbuf.items():
080c30c2   Chunk   F5 lib updated. I...
409
                        b.put(imgname, {'cf_tag:chosen': imgtag[0], 'cf_tag:class': imgtag[1]})
2c2d57c7   Chunk   ILSVRC datapath h...
410
411
412
413
414
415
416
417
            except ValueError:
                raise
        else:
            raise Exception("Unknown tagtype!")


    def store_feat(self, feattype='ibd'):
        if self.table == None:
080c30c2   Chunk   F5 lib updated. I...
418
            self.table = self.get_table()
2c2d57c7   Chunk   ILSVRC datapath h...
419

080c30c2   Chunk   F5 lib updated. I...
420
421
422
423
424
425
426
        dict_featbuf = {}
        for path, subdirs, files in os.walk(self.feat_dir):
            for name in files:
                featpath = os.path.join(path, name)
                # print featpath
                with open(featpath, 'rb') as featfile:
                    imgname = path.split('/')[-1] + name.replace('.' + feattype, '.jpg')
080c30c2   Chunk   F5 lib updated. I...
427
428
                    dict_featbuf[imgname] = featfile.read()

2c2d57c7   Chunk   ILSVRC datapath h...
429
        try:
84648488   Chunk   reverted.
430
            with self.table.batch(batch_size=5000) as b:
2c2d57c7   Chunk   ILSVRC datapath h...
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
                for imgname, featdesc in dict_featbuf.items():
                    b.put(imgname, {'cf_feat:' + feattype: featdesc})
        except ValueError:
            raise
            pass


    def load_data(self, mode='local', feattype='ibd', tagtype='class'):
        INDEX = []
        X = []
        Y = []

        if mode == "local":

            dict_dataset = {}

            if feattype == 'coef':  # raw
                with open(self.list_file, 'rb') as tsvfile:
                    tsvfile = csv.reader(tsvfile, delimiter='\t')
                    for line in tsvfile:
                        hash = line[0]
84648488   Chunk   reverted.
452
                        tag = line[-1]
bde8352b   Chunk   shuffling.
453
                        image = os.path.join(self.img_dir, hash[:3], hash[3:] + '.jpg')
f1fa5b17   Chunk   review & streaming.
454
                        if image:
2c2d57c7   Chunk   ILSVRC datapath h...
455
456
457
458
459
460
                            im = Jpeg(image, key=sample_key)
                            dict_dataset[hash] = (tag, im.getCoefBlocks('Y'))

            else:
                with open(self.list_file, 'rb') as tsvfile:
                    tsvfile = csv.reader(tsvfile, delimiter='\t')
d0be60e7   Chunk   jpeg update.
461
462
                    for line in tsvfile:
                        hash = line[0]
ec755e37   Chunk   cropping.
463
464
465
466
467
468
                        tag = line[-1]
                        path_feat = os.path.join(self.feat_dir, hash[:3], hash[3:] + '.' + feattype)
                        if path_feat:
                            with open(path_feat, 'rb') as featfile:
                                dict_dataset[hash] = (tag, json.loads(featfile.read()))

bbd2f705   Chunk   cropping.
469
            for tag, feat in dict_dataset.values():
ec755e37   Chunk   cropping.
470
471
                # X.append([item for sublist in feat for subsublist in sublist for item in subsublist])
                X.append(np.array(feat).ravel().tolist())
b9990e77   Chunk   staged.
472
473
474
                Y.append(int(tag))

        elif mode == "hbase":  # remote
84648488   Chunk   reverted.
475
            if self.table == None:
bde8352b   Chunk   shuffling.
476
477
                self.table = self.get_table()

e6be6b61   Chunk   import caffe.
478
            col_feat, col_tag = 'cf_feat:' + feattype, 'cf_tag:' + tagtype
b9990e77   Chunk   staged.
479
            for key, data in self.table.scan(columns=[col_feat, col_tag]):
ec755e37   Chunk   cropping.
480
481
482
483
484
485
486
487
488
489
490
                X.append(
                    [item for sublist in json.loads(data[col_feat]) for subsublist in sublist for item in subsublist])
                Y.append(int(data[col_tag]))

        elif mode == "spark":  # cluster
            if self.sparker == None:
                self.sparker = SC.Sparker(host='HPC-server', appname='ImageCV', master='spark://HPC-server:7077')

            result = self.sparker.read_hbase(self.table_name)  # result = {key:[feat,tag],...}
            for feat, tag in result:
                X.append(feat)
d0be60e7   Chunk   jpeg update.
491
                Y.append(tag)
b9990e77   Chunk   staged.
492
493
494
495

        else:
            raise Exception("Unknown mode!")

2c2d57c7   Chunk   ILSVRC datapath h...
496
        return X, Y
ec755e37   Chunk   cropping.

2c2d57c7   Chunk   ILSVRC datapath h...

ec755e37   Chunk   cropping.

84648488   Chunk   reverted.

02528074   Chunk   staged.

2c2d57c7   Chunk   ILSVRC datapath h...

ec755e37   Chunk   cropping.

02528074   Chunk   staged.

84648488   Chunk   reverted.

2c2d57c7   Chunk   ILSVRC datapath h...

02528074   Chunk   staged.

2c2d57c7   Chunk   ILSVRC datapath h...

cb798a7f   Chunk   libs & scripts in...

2c2d57c7   Chunk   ILSVRC datapath h...

bde8352b   Chunk   shuffling.

2c2d57c7   Chunk   ILSVRC datapath h...

bde8352b   Chunk   shuffling.

84648488   Chunk   reverted.