1d19f0e7
Chunk
staged.
|
1
2
3
4
|
## -*- coding: utf-8 -*-
from libmjsteg import Jsteg
|
d3e050d6
Chunk
staged.
|
5
|
__all__ = ['Jpeg', 'colorMap', 'diffblock', 'diffblocks']
|
1d19f0e7
Chunk
staged.
|
6
7
8
9
10
11
12
|
# We need standard components from :mod:`numpy`, and some auxiliary
# functions from submodules.
#
# ::
import numpy.random as rnd
|
84648488
Chunk
reverted.
|
13
14
15
|
from numpy import shape
import numpy as np
import pylab as plt
|
1d19f0e7
Chunk
staged.
|
16
17
18
|
import base
from dct import bdct, ibdct
|
2c2d57c7
Chunk
ILSVRC datapath h...
|
19
|
from compress import *
|
1d19f0e7
Chunk
staged.
|
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
|
# The colour codes are defined in the JPEG standard. We store
# them here for easy reference by name::
colorCode = {
"GRAYSCALE": 1,
"RGB": 2,
"YCbCr": 3,
"CMYK": 4,
"YCCK": 5
}
colorParam = ['Y', 'Cb', 'Cr']
colorMap = {'Y': 0, 'Cb': 1, 'Cr': 2}
# The JPEG class
# ==============
class Jpeg(Jsteg):
"""
The jpeg (derived from jpegObject) allows the user to extract
a sequence of pseudo-randomly ordered jpeg coefficients for
watermarking/steganography, and reinsert them.
"""
def __init__(self, file=None, key=None, rndkey=True, image=None,
verbosity=1, **kw):
"""
The constructor will return a new Object with data from the given file.
The key is used to determine the order of the jpeg coefficients.
If no key is given, a random key is extracted using
random.SystemRandom().
"""
if image != None:
raise NotImplementedError, "Compression is not yet implemented"
|
e3e7e73a
Chunk
spider standalone...
|
56
57
58
59
|
Jsteg.__init__(self, file, **kw)
self.verbosity = verbosity
if verbosity > 0:
print "[Jpeg] %s (%ix%i)" % (self.filename, self.image_width, self.image_height)
|
1d19f0e7
Chunk
staged.
|
60
61
|
if key != None:
self.key = key
|
d0be60e7
Chunk
jpeg update.
|
62
|
elif rndkey:
|
1d19f0e7
Chunk
staged.
|
63
64
65
66
67
68
69
|
self.key = [base.sysrnd.getrandbits(16) for x in range(16)]
else:
self.key = None
def getkey(self):
"""Return the key used to shuffle the coefficients."""
|
84648488
Chunk
reverted.
|
70
|
return self.key
|
1d19f0e7
Chunk
staged.
|
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
|
# 1D Signal Representations
# -------------------------
def rawsignal(self, mask=base.acMaskBlock, channel="All"):
"""
Return a 1D array of AC coefficients.
(Most applications should use getsignal() rather than rawsignal().)
"""
R = []
if channel == "All":
for X in self.coef_arrays:
(h, w) = X.shape
A = base.acMask(h, w, mask)
R = np.hstack([R, X[A]])
else:
cID = self.getCompID(channel)
X = self.coef_arrays[cID]
(h, w) = X.shape
A = base.acMask(h, w, mask)
R = np.hstack([R, X[A]])
return R
def getsignal(self, mask=base.acMaskBlock, channel="All"):
"""Return a 1D array of AC coefficients in random order."""
R = self.rawsignal(mask, channel)
if self.key == None:
return R
else:
rnd.seed(self.key)
return R[rnd.permutation(len(R))]
def setsignal(self, R0, mask=base.acMaskBlock, channel="All"):
"""Reinserts AC coefficients from getitem in the correct positions."""
if self.key != None:
rnd.seed(self.key)
fst = 0
P = rnd.permutation(len(R0))
R = np.array(R0)
R[P] = R0
else:
R = R0
if channel == "All":
for cID in range(3):
X = self.coef_arrays[cID]
s = X.size * 63 / 64
(h, w) = X.shape
X[base.acMask(h, w, mask)] = R[fst:(fst + s)]
fst += s
# Jset
blocks = self.getCoefBlocks(channel=colorParam[cID])
xmax, ymax = self.Jgetcompdim(cID)
for y in range(ymax):
for x in range(xmax):
block = blocks[y, x]
self.Jsetblock(x, y, cID, bytearray(block.astype(np.int16)))
else:
cID = self.getCompID(channel)
X = self.coef_arrays[cID]
s = X.size * 63 / 64
(h, w) = X.shape
X[base.acMask(h, w, mask)] = R[fst:(fst + s)]
fst += s
# Jset
blocks = self.getCoefBlocks(channel)
xmax, ymax = self.Jgetcompdim(cID)
for y in range(ymax):
for x in range(xmax):
block = blocks[y, x]
self.Jsetblock(x, y, cID, bytearray(block.astype(np.int16)))
assert len(R) == fst
# Histogram and Image Statistics
# ------------------------------
|
84648488
Chunk
reverted.
|
150
|
|
1d19f0e7
Chunk
staged.
|
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
|
def abshist(self, mask=base.acMaskBlock, T=8):
"""
Make a histogram of absolute values for a signal.
"""
A = abs(self.rawsignal(mask)).tolist()
L = len(A)
D = {}
C = 0
for i in range(T + 1):
D[i] = A.count(i)
C += D[i]
D["high"] = L - C
D["total"] = L
return D
def hist(self, mask=base.acMaskBlock, T=8):
"""
Make a histogram of the jpeg coefficients.
The mask is a boolean 8x8 matrix indicating the
frequencies to be included. This defaults to the
AC coefficients.
"""
A = self.rawsignal(mask).tolist()
E = [-np.inf] + [i for i in range(-T, T + 2)] + [np.inf]
return np.histogram(A, E)
def plotHist(self, mask=base.acMaskBlock, T=8):
"""
Make a histogram of the jpeg coefficients.
The mask is a boolean 8x8 matrix indicating the
frequencies to be included. This defaults to the
AC coefficients.
"""
A = self.rawsignal(mask).tolist()
E = [i for i in range(-T, T + 2)]
plt.hist(A, E, histtype='bar')
plt.show()
def nzcount(self, *a, **kw):
"""Number of non-zero AC coefficients.
Arguments are passed to rawsignal(), so a non-default mask could
be specified to get other coefficients than the 63 AC coefficients.
"""
R = list(self.rawsignal(*a, **kw))
return len(R) - R.count(0)
# Access to JPEG Image Data
# -------------------------
def getCompID(self, channel):
"""
Get the index of the given colour channel.
"""
# How do we adress different channels?
colourSpace = self.jpeg_color_space;
if colourSpace == colorCode["GRAYSCALE"]:
if channel == "Y":
return 0
elif channel == None:
return 0
else:
raise Exception, "Invalid colour space designator"
elif colourSpace == colorCode["YCbCr"]:
if channel == "Y":
return 0
elif channel == "Cb":
return 1
elif channel == "Cr":
return 2
else:
raise Exception, "Invalid colour space designator"
raise NotImplementedError, "Only YCbCr and Grayscale are supported."
def getQMatrix(self, channel):
"""
Return the quantisation matrix for the given colour channel.
"""
cID = self.getCompID(channel)
return self.quant_tables[self.comp_info[cID]["quant_tbl_no"]]
def getCoefMatrix(self, channel="Y"):
"""
This method returns the coefficient matrix for the given
colour channel (as a matrix).
"""
cID = self.getCompID(channel)
return self.coef_arrays[cID]
def setCoefMatrix(self, matrix, channel="Y"):
v, h = self.getCoefMatrix(channel).shape
assert matrix.shape == (v, h), "matrix is expected of size (%d,%d)" % (v, h)
cID = self.getCompID(channel)
self.coef_arrays[cID] = matrix
blocks = self.getCoefBlocks(channel)
xmax, ymax = self.Jgetcompdim(cID)
for y in range(ymax):
for x in range(xmax):
block = blocks[y, x]
self.Jsetblock(x, y, cID, bytearray(block.astype(np.int16)))
def getCoefBlocks(self, channel="Y"):
"""
This method returns the coefficient matrix for the given
colour channel (as a 4-D tensor: (v,h,row,col)).
"""
if channel == "All":
return [
np.array([np.hsplit(arr, arr.shape[1] / 8) for arr in np.vsplit(compMat, compMat.shape[0] / 8)]) for
compMat in
|
9ff70cf4
Chunk
capacity engeneer...
|
263
|
self.coef_arrays]
|
84648488
Chunk
reverted.
|
264
|
|
9ff70cf4
Chunk
capacity engeneer...
|
265
266
|
compMat = self.getCoefMatrix(channel)
return np.array([np.hsplit(arr, arr.shape[1] / 8) for arr in np.vsplit(compMat, compMat.shape[0] / 8)])
|
1d19f0e7
Chunk
staged.
|
267
|
|
d0be60e7
Chunk
jpeg update.
|
268
|
def getCoefBlock(self, channel="Y", loc=(0, 0)):
|
84648488
Chunk
reverted.
|
269
|
"""
|
1d19f0e7
Chunk
staged.
|
270
271
272
273
274
275
276
277
|
This method returns the coefficient matrix for the given
colour channel (as a 4-D tensor: (v,h,row,col)).
"""
return self.getCoefBlocks(channel)[loc]
def setCoefBlock(self, block, channel="Y", loc=(0, 0)):
assert block.shape == (8, 8), "block is expected of size (8,8)"
|
84648488
Chunk
reverted.
|
278
|
cID = self.getCompID(channel)
|
1d19f0e7
Chunk
staged.
|
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
|
v, h = loc[0] * 8, loc[1] * 8
self.coef_arrays[cID][v:v + 8, h:h + 8] = block
self.Jsetblock(loc[1], loc[0], cID, bytearray(block.astype(np.int16)))
def setCoefBlocks(self, blocks, channel="Y"):
assert blocks.shape[-2:] == (8, 8), "block is expected of size (8,8)"
cID = self.getCompID(channel)
vmax, hmax = blocks.shape[:2]
for i in range(vmax):
for j in range(hmax):
v, h = i * 8, j * 8
self.coef_arrays[cID][v:v + 8, h:h + 8] = blocks[i, j]
self.Jsetblock(j, i, cID, bytearray(blocks[i, j].astype(np.int16)))
def getSize(self):
return self.image_width, self.image_height
|
d3e050d6
Chunk
staged.
|
298
299
300
|
def getCapacity(self, channel="Y"):
blocks = self.rawsignal(channel=channel)
return np.sum(blocks != 0)
|
9ff70cf4
Chunk
capacity engeneer...
|
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
|
# blocks = self.getCoefBlocks(channel)
# capacity = 0
# if channel == "All":
# for subblocks in blocks:
# capacity += (np.sum(subblocks != 0) - np.size(subblocks) / 64)
# else:
# capacity = (np.sum(blocks != 0) - np.size(blocks) / 64)
# return capacity
# return (np.sum(blocks[0] != 0) - np.size(blocks[0]) / 64) + (np.sum(blocks[1] != 0) - np.size(
# blocks[1]) / 64) / 4 + (np.sum(blocks[2] != 0) - np.size(blocks[2]) / 64) / 4
# return np.sum(np.array(self.coef_arrays)!=0) - np.size(self.coef_arrays) / 64
|
d0be60e7
Chunk
jpeg update.
|
316
317
|
def getQuality(self):
"""
|
84648488
Chunk
reverted.
|
318
|
Qaulity rating algorithm from ImageMagick.
|
d3e050d6
Chunk
staged.
|
319
320
321
322
323
324
325
326
327
|
e.g.
find ./ -name "*.jpg" | xargs -i sh -c "echo -n {} && identify -quiet -verbose {} |grep -E 'Quality' "
Ref - http://stackoverflow.com/questions/2024947/is-it-possible-to-tell-the-quality-level-of-a-jpeg,http://www.imagemagick.org/discourse-server/viewtopic.php?f=1&t=20235
"""
sum0 = np.sum(self.quant_tables[0])
sum1 = np.sum(self.quant_tables[1])
quality = None
|
5d5e4962
Chunk
staged.
|
328
329
|
if sum0 != None:
|
d3e050d6
Chunk
staged.
|
330
331
332
333
334
|
if sum1 != None:
sum = sum0 + sum1
qvalue = self.quant_tables[0].ravel()[2] + self.quant_tables[0].ravel()[53] + \
self.quant_tables[1].ravel()[0] + self.quant_tables[1].ravel()[-1]
hashtable = bi_hash
|
d0be60e7
Chunk
jpeg update.
|
335
336
|
sumtable = bi_sum
else:
|
d3e050d6
Chunk
staged.
|
337
338
339
340
|
sum = sum0
qvalue = self.quant_tables[0].ravel()[2] + self.quant_tables[0].ravel()[53]
hashtable = single_hash
sumtable = single_sum
|
5d5e4962
Chunk
staged.
|
341
|
else:
|
d3e050d6
Chunk
staged.
|
342
343
344
345
346
347
348
349
350
351
352
353
354
|
raise Exception("Quantization Tables Illegal")
return None
for i in range(100):
if qvalue >= hashtable[i] or sum >= sumtable[i]:
break
quality = i + 1
return quality
# Decompression
# -------------
|
84648488
Chunk
reverted.
|
355
|
|
1d19f0e7
Chunk
staged.
|
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
|
def getSpatial(self, channel="Y"):
"""
This method returns one decompressed colour channel as a matrix.
The appropriate JPEG coefficient matrix is dequantised
(using the quantisation tables held by the object) and
inverse DCT transformed.
"""
X = self.getCoefMatrix(channel)
Q = self.getQMatrix(channel)
(M, N) = shape(X)
assert M % 8 == 0, "Image size not divisible by 8"
assert N % 8 == 0, "Image size not divisible by 8"
D = X * base.repmat(Q, (M / 8, N / 8))
S = ibdct(D)
# assert max( abs(S).flatten() ) <=128, "Image colours out of range"
return (S + 128 ).astype(np.uint8)
# Complete, general decompression is not yet implemented::
|
84648488
Chunk
reverted.
|
374
|
|
1d19f0e7
Chunk
staged.
|
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
|
def getimage(self):
"""
Decompress the image and a PIL Image object.
"""
# Probably better to use a numpy image/array.
raise NotImplementedError, "Decompression is not yet implemented"
# We miss the routines for upsampling and adjusting the size
L = len(self.coef_arrays)
im = []
for i in range(L):
C = self.coef_arrays[i]
if C != None:
Q = self.quant_tables[self.comp_info[i]["quant_tbl_no"]]
im.append(ibdct(dequantise(C, Q)))
return Image.fromarray(im)
# Calibration
# -----------
|
84648488
Chunk
reverted.
|
398
|
|
1d19f0e7
Chunk
staged.
|
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
|
def getCalibrated(self, channel="Y", mode="all"):
"""
Return a calibrated coefficient matrix for the given channel.
Channel may be "Y", "Cb", or "Cr" for YCbCr format.
For Grayscale images, it may be None or "Y".
"""
S = self.getSpatial(channel)
(M, N) = shape(S)
assert M % 8 == 0, "Image size not divisible by 8"
assert N % 8 == 0, "Image size not divisible by 8"
if mode == "col":
S1 = S[:, 4:(N - 4)]
cShape = ( M / 8, N / 8 - 1 )
else:
S1 = S[4:(M - 4), 4:(N - 4)]
|
84648488
Chunk
reverted.
|
414
|
cShape = ( (M - 1) / 8, (N - 1) / 8 )
|
1d19f0e7
Chunk
staged.
|
415
416
|
D = bdct(S1 - 128)
X = D / base.repmat(self.getQMatrix(channel), cShape)
|
84648488
Chunk
reverted.
|
417
|
return np.round(X)
|
1d19f0e7
Chunk
staged.
|
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
|
def calibrate(self, *a, **kw):
assert len(self.coef_arrays) == 1
self.coef_arrays[0] = self.getCalibrated(*a, **kw)
def getCalSpatial(self, channel="Y"):
"""
Return the decompressed, calibrated, grayscale image.
A different colour channel can be selected with the channel
argument.
"""
# We calibrate the image, obtaining a JPEG matrix.
C = self.getCalibrated(channel)
# The rest is straight forward JPEG decompression.
(M, N) = shape(C)
cShape = (M / 8, N / 8)
D = C * base.repmat(self.getQMatrix(channel), cShape)
S = np.round(ibdct(D) + 128)
return S.astype(np.uint8)
def diffblock(c1, c2):
diff = False
if np.array_equal(c1, c2):
print("blocks match")
else:
print("blocks not match")
diff = True
return diff
def diffblocks(a, b):
diff = False
cnt = 0
for comp in range(a.image_components):
xmax, ymax = a.Jgetcompdim(comp)
for y in range(ymax):
for x in range(xmax):
if a.Jgetblock(x, y, comp) != b.Jgetblock(x, y, comp):
print("blocks({},{}) in component {} not match".format(y, x, comp))
diff = True
cnt += 1
return diff, cnt
|
84648488
Chunk
reverted.
|
|
|