Blame view

mdata/ILSVRC_S.py 23.2 KB
ea1eb31a   Chunk   spark is privileg...
1
2
3
__author__ = 'chunk'

from . import *
84648488   Chunk   reverted.
4
from ..mfeat import HOG, IntraBlockDiff
ea1eb31a   Chunk   spark is privileg...
5
from ..mspark import SC
02528074   Chunk   staged.
6
from pyspark.mllib.regression import LabeledPoint
ea1eb31a   Chunk   spark is privileg...
7
8
9
from ..common import *

import os, sys
ea1eb31a   Chunk   spark is privileg...
10
11
from hashlib import md5
import csv
ea1eb31a   Chunk   spark is privileg...
12
import json
ea1eb31a   Chunk   spark is privileg...
13
14
15
16
17
18
19
import happybase

from ..mjpeg import *
from ..msteg import *
from ..msteg.steganography import LSB, F3, F4, F5

import numpy as np
ea1eb31a   Chunk   spark is privileg...
20
21
from scipy import stats

f25fd27c   Chunk   staged. 'hbase' m...
22
import tempfile
ea1eb31a   Chunk   spark is privileg...
23
24
25
26
27
28

np.random.seed(sum(map(ord, "whoami")))

package_dir = os.path.dirname(os.path.abspath(__file__))


24768a99   Chunk   mode 'hbase' fini...
29
class DataILSVRC_S(DataDumperBase):
f25fd27c   Chunk   staged. 'hbase' m...
30
31
32
33
34
35
36
37
38
    """
    This module is specially for ILSVRC data processing under spark & hbase.

    We posit that the DB(e.g. HBase) has only the images data with md5 name as id.
    The task is to gennerate info(size,capacity,quality,etc.) and class & chosen tags, and then to perform embedding and finally to calcculate ibd features.

    Each step includes reading from & writing to Hbase (though PC).
    And each step must have a 'spark' mode option, which means that the operation is performed by spark with reading & wrting through RDDs.

35cf2e3a   Chunk   staged.
39
    copyright(c) 2015 chunkplus@gmail.com
f25fd27c   Chunk   staged. 'hbase' m...
40
41
    """

4f36b116   Chunk   staged.
42
    def __init__(self, base='ILSVRC2013_DET_val', category='Train_1'):
1dc7c44b   Chunk   crawler-hbase-spa...
43
        DataDumperBase.__init__(self, base, category)
ea1eb31a   Chunk   spark is privileg...
44

1dc7c44b   Chunk   crawler-hbase-spa...
45
        self.base = base
ea1eb31a   Chunk   spark is privileg...
46
        self.category = category
ea1eb31a   Chunk   spark is privileg...
47
48

        self.dict_data = {}
0fbc087e   Chunk   staged.
49
        self.rdd_data = None
ea1eb31a   Chunk   spark is privileg...
50

4f36b116   Chunk   staged.
51
52
53
54
55
56
        self.table_name = self.base.strip('/').split('/')[-1]
        if self.category != None:
            self.table_name += ('-' + self.category)

        self.sparker = SC.Sparker(host='HPC-server', appname='ImageILSVRC-S',
                                  master='spark://HPC-server:7077')
1dc7c44b   Chunk   crawler-hbase-spa...
57

f4fb4381   Chunk   staged.
58
59
        self.steger = F5.F5(sample_key, 1)

ea1eb31a   Chunk   spark is privileg...
60
    def get_table(self):
0fbc087e   Chunk   staged.
61
        print "getting table..."
ea1eb31a   Chunk   spark is privileg...
62
        if self.table != None:
24768a99   Chunk   mode 'hbase' fini...
63
            return self.table
4f36b116   Chunk   staged.
64
65

        if self.connection is None:
ea1eb31a   Chunk   spark is privileg...
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
            c = happybase.Connection('HPC-server')
            self.connection = c

        tables = self.connection.tables()
        if self.table_name not in tables:
            families = {'cf_pic': dict(),
                        'cf_info': dict(max_versions=10),
                        'cf_tag': dict(),
                        'cf_feat': dict(),
                        }
            self.connection.create_table(name=self.table_name, families=families)

        table = self.connection.table(name=self.table_name)

        self.table = table

        return table

    def delete_table(self, table_name=None, disable=True):
        print "deleting table..."
        if table_name == None:
            table_name = self.table_name
d47ae6ce   Chunk   staged.
88

f1fa5b17   Chunk   review & streaming.
89
        if self.connection is None:
d47ae6ce   Chunk   staged.
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
            c = happybase.Connection('HPC-server')
            self.connection = c

        tables = self.connection.tables()
        if table_name not in tables:
            return False
        else:
            try:
                self.connection.delete_table(table_name, disable)
            except:
                print 'Exception when deleting table.'
                raise
        return True

    def _get_info(self, img, info_rate=None, tag_chosen=None, tag_class=None):
        """
        Tempfile is our friend. (?)
        """
f25fd27c   Chunk   staged. 'hbase' m...
108
109
110
111
112
113
114
        info_rate = info_rate if info_rate != None else 0.0
        tag_chosen = tag_chosen if tag_chosen != None else stats.bernoulli.rvs(0.8)
        tag_class = tag_class if tag_class != None else 0

        try:
            tmpf = tempfile.NamedTemporaryFile(suffix='.jpg', mode='w+b')
            tmpf.write(img)
1c2a3fa0   Chunk   staged.
115
            tmpf.seek(0)
f25fd27c   Chunk   staged. 'hbase' m...
116
117
118
            im = Jpeg(tmpf.name, key=sample_key)
            info = [
                im.image_width,
24768a99   Chunk   mode 'hbase' fini...
119
                im.image_height,
f25fd27c   Chunk   staged. 'hbase' m...
120
                im.image_width * im.image_height,
1c2a3fa0   Chunk   staged.
121
122
123
124
125
126
127
128
129
130
                im.getCapacity(),
                im.getQuality(),
                info_rate,
                tag_chosen,
                tag_class
            ]
            return info
        except Exception as e:
            print e
        finally:
f25fd27c   Chunk   staged. 'hbase' m...
131
132
133
134
135
136
137
            tmpf.close()

    def _get_feat(self, image, feattype='ibd', **kwargs):
        size = kwargs.get('size', (48, 48))

        if feattype == 'hog':
            feater = HOG.FeatHOG(size=size)
84648488   Chunk   reverted.
138
139
140
141
142
        elif feattype == 'ibd':
            feater = IntraBlockDiff.FeatIntraBlockDiff()
        else:
            raise Exception("Unknown feature type!")

f25fd27c   Chunk   staged. 'hbase' m...
143
144
145
        desc = feater.feat(image)

        return desc
ea1eb31a   Chunk   spark is privileg...
146

f25fd27c   Chunk   staged. 'hbase' m...
147

ea1eb31a   Chunk   spark is privileg...
148
    def _rddparse_data(raw_row):
f25fd27c   Chunk   staged. 'hbase' m...
149
        """
ea1eb31a   Chunk   spark is privileg...
150
        input: (u'key0',u'cf_feat:hog:[0.056273,...]--%--cf_pic:data:\ufffd\ufffd\...--%--cf_tag:hog:True')
84648488   Chunk   reverted.
151
        return: ([0.056273,...],1)
1c2a3fa0   Chunk   staged.
152

0fbc087e   Chunk   staged.
153
154
155
156
157
158
        In fact we can also use mapValues.
        """
        key = raw_row[0]
        # if key == '04650c488a2b163ca8a1f52da6022f03.jpg':
        # with open('/tmp/hhhh','wb') as f:
        # f.write(raw_row[1].decode('unicode-escape')).encode('latin-1')
0fbc087e   Chunk   staged.
159
        items = raw_row[1].decode('unicode-escape').encode('latin-1').split('--%--')
1c2a3fa0   Chunk   staged.
160
161
162
163
164
        data = items[0].split('cf_pic:data:')[-1]
        return (key, data)


    def _rddparse_all(raw_row):
0fbc087e   Chunk   staged.
165
166
        key = raw_row[0]
        items = raw_row[1].decode('unicode-escape').encode('latin-1').split('--%--')
84648488   Chunk   reverted.
167
        data = [items[0].split('cf_pic:data:')[-1]] + [json.loads(item.split(':')[-1]) for item in items[1:]]
1c2a3fa0   Chunk   staged.
168
        return (key, data)
0fbc087e   Chunk   staged.
169

1c2a3fa0   Chunk   staged.
170

84648488   Chunk   reverted.
171
    def _rdd_embed(self, row):
0fbc087e   Chunk   staged.
172
173
        """
        input:
84648488   Chunk   reverted.
174
            e.g. row =('row1',[1,3400,'hello'])
0fbc087e   Chunk   staged.
175
176
177
178
179
180
181
182
183
        return:
            newrow = ('row2',[34,5400,'embeded'])
        """
        items = row[1]
        capacity, rate, chosen = items[4], items[6], items[7]

        if chosen == 0:
            return None
        try:
1c2a3fa0   Chunk   staged.
184
            tmpf_src = tempfile.NamedTemporaryFile(suffix='.jpg', mode='w+b')
0fbc087e   Chunk   staged.
185
186
187
188
189
190
191
192
193
            tmpf_src.write(items[0])
            tmpf_src.seek(0)
            tmpf_dst = tempfile.NamedTemporaryFile(suffix='.jpg', mode='w+b')

            if rate == None:
                embed_rate = self.steger.embed_raw_data(tmpf_src.name, os.path.join(package_dir, '../res/toembed'),
                                                        tmpf_dst.name)
            else:
                assert (rate >= 0 and rate < 1)
84648488   Chunk   reverted.
194
                # print capacity
0fbc087e   Chunk   staged.
195
196
197
198
199
                hidden = np.random.bytes(int(int(capacity) * rate) / 8)
                embed_rate = self.steger.embed_raw_data(tmpf_src.name, hidden, tmpf_dst.name, frommem=True)

            tmpf_dst.seek(0)
            raw = tmpf_dst.read()
84648488   Chunk   reverted.
200
            index = md5(raw).hexdigest()
0fbc087e   Chunk   staged.
201
202
203
204
205
206
207
208
209
210
211
212
213
214

            return (index + '.jpg', [raw] + self._get_info(raw, embed_rate, 0, 1))

        except Exception as e:
            print e
            raise
        finally:
            tmpf_src.close()
            tmpf_dst.close()


    def _extract_data(self, mode='hbase', writeback=False, withdata=True):
        """
        Get info barely out of image data.
84648488   Chunk   reverted.
215
        """
1dc7c44b   Chunk   crawler-hbase-spa...
216
        print "extracting data..."
f25fd27c   Chunk   staged. 'hbase' m...
217
218
219
        if mode == 'hbase':
            if self.table == None:
                self.table = self.get_table()
f1fa5b17   Chunk   review & streaming.
220

f25fd27c   Chunk   staged. 'hbase' m...
221
222
223
224
225
            cols = ['cf_pic:data']
            for key, data in self.table.scan(columns=cols):
                data = data['cf_pic:data']
                self.dict_data[key] = [data] + self._get_info(data)

24768a99   Chunk   mode 'hbase' fini...
226
227
            if not writeback:
                return self.dict_data
f25fd27c   Chunk   staged. 'hbase' m...
228
229
230
231
232
233
234
235
236
237
238
            else:
                try:
                    with self.table.batch(batch_size=5000) as b:
                        for imgname, imginfo in self.dict_data.items():
                            b.put(imgname,
                                  {
                                      # 'cf_pic:data': imginfo[0],
                                      'cf_info:width': str(imginfo[1]),
                                      'cf_info:height': str(imginfo[2]),
                                      'cf_info:size': str(imginfo[3]),
                                      'cf_info:capacity': str(imginfo[4]),
1c2a3fa0   Chunk   staged.
239
240
241
242
243
244
245
246
                                      'cf_info:quality': str(imginfo[5]),
                                      'cf_info:rate': str(imginfo[6]),
                                      'cf_tag:chosen': str(imginfo[7]),
                                      'cf_tag:class': str(imginfo[8]),
                                  })
                except ValueError:
                    raise

24768a99   Chunk   mode 'hbase' fini...
247

f25fd27c   Chunk   staged. 'hbase' m...
248
249
250
251
252
        elif mode == 'spark':
            if self.sparker == None:
                self.sparker = SC.Sparker(host='HPC-server', appname='ImageILSVRC-S',
                                          master='spark://HPC-server:7077')

02528074   Chunk   staged.
253
254
            cols = [
                'cf_pic:data',
0bd44a28   Chunk   staged.
255
                'cf_info:width',
0fbc087e   Chunk   staged.
256
                'cf_info:height',
1c2a3fa0   Chunk   staged.
257
258
259
260
261
262
263
264
265
266
267
                'cf_info:size',
                'cf_info:capacity',
                'cf_info:quality',
                'cf_info:rate',
                'cf_tag:chosen',
                'cf_tag:class'
            ]

            # # Debug
            # tmp_data = self.sparker.read_hbase(self.table_name, func=SC.rddparse_data_ILS,
            # collect=False)
0fbc087e   Chunk   staged.
268
            # # tmp_data = tmp_data.mapValues(lambda data: [data] + SC.rddinfo_ILS(data))
3b4e250d   Chunk   staged.
269
            # print tmp_data.collect()[0][1]
02528074   Chunk   staged.
270
            # return
1c2a3fa0   Chunk   staged.
271
272
273
274


            self.rdd_data = self.sparker.read_hbase(self.table_name, func=SC.rddparse_data_ILS,
                                                    collect=False).mapValues(
3b4e250d   Chunk   staged.
275
276
                lambda data: [data] + SC.rddinfo_ILS(data))

02528074   Chunk   staged.
277
            if not writeback:
0bd44a28   Chunk   staged.
278
                return self.rdd_data
1c2a3fa0   Chunk   staged.
279
            else:
3b4e250d   Chunk   staged.
280
                self.sparker.write_hbase(self.table_name, self.rdd_data, fromrdd=True, columns=cols,
0fbc087e   Chunk   staged.
281
282
283
                                         withdata=withdata)
        elif mode == 'analysis':
            if self.sparker == None:
02528074   Chunk   staged.
284
                self.sparker = SC.Sparker(host='HPC-server', appname='ImageILSVRC-S',
0bd44a28   Chunk   staged.
285
                                          master='spark://HPC-server:7077')
e3e7e73a   Chunk   spider standalone...
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311

            cols = [
                'cf_pic:data',
            ]

            # # Debug
            # tmp_data = self.sparker.read_hbase(self.table_name, func=SC.rddparse_data_ILS,
            # collect=False)
            # # tmp_data = tmp_data.mapValues(lambda data: [data] + SC.rddinfo_ILS(data))
            # print tmp_data.collect()[0][1]
            # return


            self.rdd_data = self.sparker.read_hbase(self.table_name, func=SC.rddparse_data_ILS,
                                                    collect=False).mapValues(
                lambda data: [data])

            if not writeback:
                return self.rdd_data
            else:
                self.sparker.write_hbase(self.table_name, self.rdd_data, fromrdd=True, columns=cols,
                                         withdata=withdata)

        else:
            raise Exception("Unknown mode!")

0fbc087e   Chunk   staged.
312

ea1eb31a   Chunk   spark is privileg...
313
    def _embed_data(self, mode='hbase', rate=None, readforward=False, writeback=False, withdata=True):
f25fd27c   Chunk   staged. 'hbase' m...
314
        print "embedding data..."
ea1eb31a   Chunk   spark is privileg...
315
        if mode == 'hbase':
84648488   Chunk   reverted.
316
317
            if self.table == None:
                self.table = self.get_table()
f1fa5b17   Chunk   review & streaming.
318

f25fd27c   Chunk   staged. 'hbase' m...
319
320
321
322
323
324
            if readforward:
                self.dict_data = {}

                cols = [
                    'cf_pic:data',
                    'cf_info:width',
1c2a3fa0   Chunk   staged.
325
326
327
328
329
330
331
332
333
334
335
336
337
                    'cf_info:height',
                    'cf_info:size',
                    'cf_info:capacity',
                    'cf_info:quality',
                    'cf_info:rate',
                    'cf_tag:chosen',
                    'cf_tag:class'
                ]

                for key, data in self.table.scan(columns=cols):
                    data = [data[k] for k in cols]
                    self.dict_data[key] = data

24768a99   Chunk   mode 'hbase' fini...
338
339
            dict_data_ext = {}

f25fd27c   Chunk   staged. 'hbase' m...
340
341
342
343
344
            for imgname, imgdata in self.dict_data.items():
                capacity, chosen = int(imgdata[4]), int(imgdata[7])

                if chosen == 0:
                    continue
1dc7c44b   Chunk   crawler-hbase-spa...
345
346
347
348
349

                try:
                    tmpf_src = tempfile.NamedTemporaryFile(suffix='.jpg', mode='w+b')
                    tmpf_src.write(imgdata[0])
                    tmpf_src.seek(0)
f25fd27c   Chunk   staged. 'hbase' m...
350
351
352
                    tmpf_dst = tempfile.NamedTemporaryFile(suffix='.jpg', mode='w+b')

                    if rate == None:
24768a99   Chunk   mode 'hbase' fini...
353
                        embed_rate = self.steger.embed_raw_data(tmpf_src.name,
f25fd27c   Chunk   staged. 'hbase' m...
354
355
356
                                                                os.path.join(package_dir, '../res/toembed'),
                                                                tmpf_dst.name)
                    else:
0fbc087e   Chunk   staged.
357
                        assert (rate >= 0 and rate < 1)
84648488   Chunk   reverted.
358
                        # print capacity
0fbc087e   Chunk   staged.
359
                        hidden = np.random.bytes(int(capacity * rate) / 8)
f25fd27c   Chunk   staged. 'hbase' m...
360
361
362
                        embed_rate = self.steger.embed_raw_data(tmpf_src.name, hidden, tmpf_dst.name, frommem=True)

                    tmpf_dst.seek(0)
1dc7c44b   Chunk   crawler-hbase-spa...
363
                    raw = tmpf_dst.read()
84648488   Chunk   reverted.
364
                    index = md5(raw).hexdigest()
f25fd27c   Chunk   staged. 'hbase' m...
365
366
367
368
369
                    dict_data_ext[index + '.jpg'] = [raw] + self._get_info(raw, embed_rate, 0, 1)


                except Exception as e:
                    print e
ea1eb31a   Chunk   spark is privileg...
370
                    raise
ea1eb31a   Chunk   spark is privileg...
371
                finally:
f25fd27c   Chunk   staged. 'hbase' m...
372
373
                    tmpf_src.close()
                    tmpf_dst.close()
24768a99   Chunk   mode 'hbase' fini...
374

f25fd27c   Chunk   staged. 'hbase' m...
375
376
377
            self.dict_data.update(dict_data_ext)

            if not writeback:
ea1eb31a   Chunk   spark is privileg...
378
                return self.dict_data
f25fd27c   Chunk   staged. 'hbase' m...
379
380
381
382
383
384
385
386
387
388
389
            else:
                try:
                    with self.table.batch(batch_size=5000) as b:
                        for imgname, imginfo in dict_data_ext.items():
                            b.put(imgname,
                                  {
                                      'cf_pic:data': imginfo[0],
                                      'cf_info:width': str(imginfo[1]),
                                      'cf_info:height': str(imginfo[2]),
                                      'cf_info:size': str(imginfo[3]),
                                      'cf_info:capacity': str(imginfo[4]),
1c2a3fa0   Chunk   staged.
390
391
392
393
394
395
396
397
398
                                      'cf_info:quality': str(imginfo[5]),
                                      'cf_info:rate': str(imginfo[6]),
                                      'cf_tag:chosen': str(imginfo[7]),
                                      'cf_tag:class': str(imginfo[8]),
                                  })
                except ValueError:
                    raise

        elif mode == 'spark':
f25fd27c   Chunk   staged. 'hbase' m...
399
400
401
402
            if self.sparker == None:
                self.sparker = SC.Sparker(host='HPC-server', appname='ImageILSVRC-S',
                                          master='spark://HPC-server:7077')

02528074   Chunk   staged.
403
404
            cols = [
                'cf_pic:data',
0bd44a28   Chunk   staged.
405
                'cf_info:width',
0fbc087e   Chunk   staged.
406
                'cf_info:height',
1c2a3fa0   Chunk   staged.
407
408
409
410
411
412
413
414
415
416
417
                'cf_info:size',
                'cf_info:capacity',
                'cf_info:quality',
                'cf_info:rate',
                'cf_tag:chosen',
                'cf_tag:class'
            ]

            if readforward:
                self.rdd_data = self.sparker.read_hbase(self.table_name, func=SC.rddparse_all_ILS, collect=False)

0fbc087e   Chunk   staged.
418
419
            # rdd_data_ext = self.rdd_data.map(lambda x: SC.rddembed_ILS(x, rate=rate)).filter(lambda x: x != None)
            # self.rdd_data = self.rdd_data.union(rdd_data_ext)
84648488   Chunk   reverted.
420

0fbc087e   Chunk   staged.
421
            self.rdd_data = self.rdd_data.flatMap(lambda x: SC.rddembed_ILS_EXT(x, rate=rate))
489c5608   Chunk   debugging...
422
423
            if not writeback:
                return self.rdd_data
0fbc087e   Chunk   staged.
424
            else:
489c5608   Chunk   debugging...
425
                self.sparker.write_hbase(self.table_name, self.rdd_data, fromrdd=True, columns=cols,
0fbc087e   Chunk   staged.
426
                                         withdata=withdata)
1c2a3fa0   Chunk   staged.
427

0fbc087e   Chunk   staged.
428
        else:
02528074   Chunk   staged.
429
            raise Exception("Unknown mode!")
0bd44a28   Chunk   staged.
430

0fbc087e   Chunk   staged.
431

ea1eb31a   Chunk   spark is privileg...
432
    def _extract_feat(self, mode='hbase', feattype='ibd', readforward=False, writeback=False, withdata=False):
f25fd27c   Chunk   staged. 'hbase' m...
433
434
        print "extracting feat..."
        if mode == 'hbase':
84648488   Chunk   reverted.
435
436
            if self.table == None:
                self.table = self.get_table()
f1fa5b17   Chunk   review & streaming.
437

f25fd27c   Chunk   staged. 'hbase' m...
438
439
440
441
442
443
            if readforward:
                self.dict_data = {}
                cols = [
                    'cf_pic:data',
                    'cf_info:width',
                    'cf_info:height',
1c2a3fa0   Chunk   staged.
444
445
446
447
448
449
450
451
452
453
454
                    'cf_info:size',
                    'cf_info:capacity',
                    'cf_info:quality',
                    'cf_info:rate',
                    'cf_tag:chosen',
                    'cf_tag:class'
                ]
                for key, data in self.table.scan(columns=cols):
                    data = [data[k] for k in cols]
                    self.dict_data[key] = data

24768a99   Chunk   mode 'hbase' fini...
455
456
            for imgname, imgdata in self.dict_data.items():
                try:
f25fd27c   Chunk   staged. 'hbase' m...
457
458
459
460
461
462
                    tmpf_src = tempfile.NamedTemporaryFile(suffix='.jpg', mode='w+b')
                    tmpf_src.write(imgdata[0])
                    tmpf_src.seek(0)

                    desc = json.dumps(self._get_feat(tmpf_src.name, feattype=feattype).tolist())

24768a99   Chunk   mode 'hbase' fini...
463
                    self.dict_data[imgname].append(desc)
ea1eb31a   Chunk   spark is privileg...
464

24768a99   Chunk   mode 'hbase' fini...
465
                except Exception as e:
ea1eb31a   Chunk   spark is privileg...
466
                    print e
f25fd27c   Chunk   staged. 'hbase' m...
467
                    raise
ea1eb31a   Chunk   spark is privileg...
468
                finally:
f25fd27c   Chunk   staged. 'hbase' m...
469
470
                    tmpf_src.close()

24768a99   Chunk   mode 'hbase' fini...
471
            if not writeback:
f25fd27c   Chunk   staged. 'hbase' m...
472
473
                return self.dict_data
            else:
ea1eb31a   Chunk   spark is privileg...
474
                try:
f25fd27c   Chunk   staged. 'hbase' m...
475
476
477
478
479
480
481
482
483
                    with self.table.batch(batch_size=5000) as b:
                        for imgname, imginfo in self.dict_data.items():
                            b.put(imgname,
                                  {
                                      'cf_pic:data': imginfo[0],
                                      'cf_info:width': str(imginfo[1]),
                                      'cf_info:height': str(imginfo[2]),
                                      'cf_info:size': str(imginfo[3]),
                                      'cf_info:capacity': str(imginfo[4]),
1c2a3fa0   Chunk   staged.
484
485
486
487
488
489
490
491
492
493
                                      'cf_info:quality': str(imginfo[5]),
                                      'cf_info:rate': str(imginfo[6]),
                                      'cf_tag:chosen': str(imginfo[7]),
                                      'cf_tag:class': str(imginfo[8]),
                                      'cf_feat:' + feattype: imginfo[9],
                                  })
                except ValueError:
                    raise

        elif mode == 'spark':
f25fd27c   Chunk   staged. 'hbase' m...
494
495
496
497
            if self.sparker == None:
                self.sparker = SC.Sparker(host='HPC-server', appname='ImageILSVRC-S',
                                          master='spark://HPC-server:7077')

02528074   Chunk   staged.
498
499
            cols = [
                'cf_pic:data',
0bd44a28   Chunk   staged.
500
                'cf_info:width',
2c507774   Chunk   staged.
501
                'cf_info:height',
1c2a3fa0   Chunk   staged.
502
503
504
505
506
507
508
509
510
511
512
513
                'cf_info:size',
                'cf_info:capacity',
                'cf_info:quality',
                'cf_info:rate',
                'cf_tag:chosen',
                'cf_tag:class',
                'cf_feat:' + feattype,
            ]

            if readforward:
                self.rdd_data = self.sparker.read_hbase(self.table_name, func=SC.rddparse_all_ILS, collect=False)

2c507774   Chunk   staged.
514
515
            self.rdd_data = self.rdd_data.mapValues(lambda items: SC.rddfeat_ILS(items, feattype))

84648488   Chunk   reverted.
516
            # print self.rdd_data.collect()[0]
2c507774   Chunk   staged.
517
            # return
e3e7e73a   Chunk   spider standalone...
518

8bddd8b3   Chunk   You guess what? T...
519
520
521
            if not writeback:
                return self.rdd_data
            else:
2c507774   Chunk   staged.
522
523
                print "writing back..."
                self.sparker.write_hbase(self.table_name, self.rdd_data, fromrdd=True, columns=cols,
1c2a3fa0   Chunk   staged.
524
                                         withdata=withdata)
2c507774   Chunk   staged.
525
        else:
f1fa5b17   Chunk   review & streaming.
526
            raise Exception("Unknown mode!")
02528074   Chunk   staged.
527

0bd44a28   Chunk   staged.
528
    def _analysis(self, mode='analysis', feattype='ibd', readforward=False, writeback=True, withdata=False):
f25fd27c   Chunk   staged. 'hbase' m...
529
530
531
        if mode == 'analysis':
            if self.sparker == None:
                self.sparker = SC.Sparker(host='HPC-server', appname='ImageILSVRC-S',
e3ec1f74   Chunk   staged.
532
                                          master='spark://HPC-server:7077')
e3e7e73a   Chunk   spider standalone...
533
534
535
536
537
538
539

            cols = [
                'cf_pic:data',
                'cf_tag:class',
            ]

            if readforward:
e3e7e73a   Chunk   spider standalone...
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
                self.rdd_data = self.sparker.read_hbase(self.table_name, func=SC.rddparse_all_ILS, collect=False)

            self.rdd_data = self.rdd_data.mapValues(lambda items: SC.rddanalysis_ILS(items))

            # print self.rdd_data.collect()[0]
            # return

            if not writeback:
                return self.rdd_data
            else:
                print "writing back..."
                self.sparker.write_hbase(self.table_name, self.rdd_data, fromrdd=True, columns=cols,
                                         withdata=withdata)

        else:
            raise Exception("Unknown mode!")

    def format(self):
        print "formatting..."
        self._extract_data(mode='hbase', writeback=False)
84648488   Chunk   reverted.
560
        self._embed_data(mode='hbase', rate=0.1, readforward=False, writeback=False)
f25fd27c   Chunk   staged. 'hbase' m...
561
        self._extract_feat(mode='hbase', feattype='ibd', readforward=False, writeback=True)
f1fa5b17   Chunk   review & streaming.
562

f25fd27c   Chunk   staged. 'hbase' m...
563
564
565

    def load_data(self, mode='hbase', feattype='ibd', tagtype='class', collect=False):
        print "loading data..."
ea1eb31a   Chunk   spark is privileg...
566
        INDEX = []
84648488   Chunk   reverted.
567
        X = []
02528074   Chunk   staged.
568
        Y = []
f1fa5b17   Chunk   review & streaming.
569
        if mode == "local":
ea1eb31a   Chunk   spark is privileg...
570
571
572
            dict_dataset = {}

            if feattype == 'coef':  # raw
0bd44a28   Chunk   staged.
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
                with open(self.list_file, 'rb') as tsvfile:
                    tsvfile = csv.reader(tsvfile, delimiter='\t')
                    for line in tsvfile:
                        hash = line[0]
                        tag = line[-1]
                        image = os.path.join(self.img_dir, hash[:3], hash[3:] + '.jpg')
                        if image:
                            im = Jpeg(image, key=sample_key)
                            dict_dataset[hash] = (tag, im.getCoefMatrix(channel='Y'))

                for tag, feat in dict_dataset.values():
                    feat.ravel()[[i * 304 + j for i in range(0, 304, 8) for j in range(0, 304, 8)]] = 0
                    X.append(feat.tolist())
                    Y.append(int(tag))

e3e7e73a   Chunk   spider standalone...
588
            else:
0bd44a28   Chunk   staged.
589
590
                with open(self.list_file, 'rb') as tsvfile:
                    tsvfile = csv.reader(tsvfile, delimiter='\t')
ea1eb31a   Chunk   spark is privileg...
591
                    for line in tsvfile:
0bd44a28   Chunk   staged.
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
                        hash = line[0]
                        tag = line[-1]
                        path_feat = os.path.join(self.feat_dir, hash[:3], hash[3:] + '.' + feattype)
                        if path_feat:
                            with open(path_feat, 'rb') as featfile:
                                dict_dataset[hash] = (tag, json.loads(featfile.read()))

                for tag, feat in dict_dataset.values():
                    # X.append([item for sublist in feat for subsublist in sublist for item in subsublist])
                    X.append(np.array(feat).ravel().tolist())
                    Y.append(int(tag))

        elif mode == "hbase":
            if self.table == None:
                self.table = self.get_table()

            col_feat, col_tag = 'cf_feat:' + feattype, 'cf_tag:' + tagtype
ea1eb31a   Chunk   spark is privileg...
609
610
611
612
613
            for key, data in self.table.scan(columns=[col_feat, col_tag]):
                # X.append(
                # [item for sublist in json.loads(data[col_feat]) for subsublist in sublist for item in subsublist])
                X.append(np.array(json.loads(data[col_feat])).ravel().tolist())
                Y.append(int(data[col_tag]))
0bd44a28   Chunk   staged.
614
615
616

        elif mode == "spark" or mode == "cluster":
            if self.sparker == None:
02528074   Chunk   staged.
617
                self.sparker = SC.Sparker(host='HPC-server', appname='ImageILSVRC-S',
ea1eb31a   Chunk   spark is privileg...
618
619
                                          master='spark://HPC-server:7077')

02528074   Chunk   staged.
620
621
            rdd_dataset = self.sparker.read_hbase(self.table_name, func=SC.rddparse_dataset_ILS, collect=False)
            if not collect:
0bd44a28   Chunk   staged.
622
                rdd_dataset = rdd_dataset.map(lambda x: LabeledPoint(x[0], x[1]))
02528074   Chunk   staged.
623
                return rdd_dataset
84648488   Chunk   reverted.
624

02528074   Chunk   staged.
625
626
627
            for tag, feat in rdd_dataset.collect():
                X.append(feat)
                Y.append(tag)
ea1eb31a   Chunk   spark is privileg...
628
        else:
02528074   Chunk   staged.
629
            raise Exception("Unknown mode!")
ea1eb31a   Chunk   spark is privileg...
630
631

        return X, Y
ea1eb31a   Chunk   spark is privileg...

84648488   Chunk   reverted.