f69baeb6
Chunk
spark streaming ...
|
1
2
3
4
5
6
7
8
9
10
11
|
__author__ = 'chunk'
from ..common import *
from . import *
from .dependencies import *
from .SC import *
import sys
from pyspark import SparkConf, SparkContext
from pyspark.streaming import StreamingContext
|
ece71a0d
Chunk
Streaming! encodi...
|
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
|
import SocketServer
import pickle
import json
import cjson
import happybase
class HbaseDumper(object):
def __init__(self, tablename=None):
self.table_name = tablename if tablename != None else "StreamTable"
self.table = None
self.connection = None
self.sparkcontex = None
def get_table(self):
if self.table != None:
return self.table
if self.connection is None:
c = happybase.Connection('HPC-server')
self.connection = c
tables = self.connection.tables()
if self.table_name not in tables:
families = {'cf_pic': dict(),
'cf_info': dict(max_versions=10),
'cf_tag': dict(),
'cf_feat': dict(),
}
self.connection.create_table(name=self.table_name, families=families)
table = self.connection.table(name=self.table_name)
self.table = table
return table
def store_item(self, item):
if self.table == None:
self.table = self.get_table()
# data = {}
# for key in item.keys():
# data[key + ':'] = item[key]
# self.table.put(item['id'], data)
self.table.put(item['id'], {'cf_pic:data': item['data']})
# @TODO: Bulk put
def store_items(self, items):
if self.table == None:
self.table = self.get_table()
dict_databuf = {}
for item in items:
data = {}
for key in item.keys():
data[key + ':'] = item[key]
dict_databuf[item['id']] = data
try:
with self.table.batch(batch_size=5000) as b:
for rowkey, data in dict_databuf.items():
b.put(rowkey, data)
except ValueError:
raise
pass
|
f69baeb6
Chunk
spark streaming ...
|
79
80
|
class StreamSparker(Sparker):
|
ece71a0d
Chunk
Streaming! encodi...
|
81
82
|
def __init__(self, host='HPC-server', appname='NewPySparkStreamingApp', source='localhost',
port=9999, **kwargs):
|
018ebf56
Chunk
Spark Streaming T...
|
83
|
Sparker.__init__(self, host=host, appname=appname)
|
f69baeb6
Chunk
spark streaming ...
|
84
85
86
87
88
89
90
91
92
|
self.source = source
self.port = port
self.ssc = StreamingContext(sparkContext=self.sc, batchDuration=1)
def start(self):
self.ssc.start()
self.ssc.awaitTermination()
|
f69baeb6
Chunk
spark streaming ...
|
93
94
95
96
97
98
99
100
101
102
103
104
105
106
|
def set_datasource(self, source='localhost', port=9999):
self.source = source
self.port = port
def _word_count(self):
lines = self.ssc.socketTextStream(self.source, self.port)
words = lines.flatMap(lambda line: line.split(" "))
pairs = words.map(lambda word: (word, 1))
wordCounts = pairs.reduceByKey(lambda x, y: x + y)
wordCounts.pprint()
self.start()
|
ece71a0d
Chunk
Streaming! encodi...
|
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
|
def recvall(self, sock):
total_data = []
while True:
data = sock.recv(4096)
if not data: break
total_data.append(data)
return ''.join(total_data)
class MyTCPHandler(SocketServer.BaseRequestHandler):
"""
The RequestHandler class for our server.
It is instantiated once per connection to the server, and must
override the handle() method to implement communication to the
client.
"""
def handle(self):
self.data = self.recvall(self.request).strip()
# self.data = self.request.recv(10485760).strip().decode('utf-8').encode('latin-1')
# item = json.loads(self.data)
item = cjson.decode(self.data)
hbasedumper = HbaseDumper(tablename='STREAMTABLE')
hbasedumper.store_item(item)
print item
def _item_extract(self):
# SocketServer.TCPServer.allow_reuse_address = True
# self.sock_s = SocketServer.TCPServer((self.source, self.port), self.MyTCPHandler)
# self.sock_s.serve_forever()
|
f69baeb6
Chunk
spark streaming ...
|
137
|
|
ece71a0d
Chunk
Streaming! encodi...
|
138
139
140
141
142
143
144
|
lines = self.ssc.socketTextStream(self.source, self.port)
print lines.collect()
# words = lines.flatMap(lambda line: line.split(" "))
# pairs = words.map(lambda word: (word, 1))
# wordCounts = pairs.reduceByKey(lambda x, y: x + y)
#
# wordCounts.pprint()
|
f69baeb6
Chunk
spark streaming ...
|
145
|
|
ece71a0d
Chunk
Streaming! encodi...
|
146
|
self.start()
|