Blame view

mdata/ILSVRC.py 15.5 KB
2c2d57c7   Chunk   ILSVRC datapath h...
1
2
3
__author__ = 'chunk'

from . import *
84648488   Chunk   reverted.
4
from ..mfeat import HOG, IntraBlockDiff
2c2d57c7   Chunk   ILSVRC datapath h...
5
6
7
8
9
10
11
12
13
14
15
16
17
18
from ..mspark import SC
from ..common import *

import os, sys
from PIL import Image
from hashlib import md5
import csv
import shutil
import json
import collections
import happybase

from ..mjpeg import *
from ..msteg import *
9ff70cf4   Chunk   capacity engeneer...
19
from ..msteg.steganography import LSB, F3, F4, F5
2c2d57c7   Chunk   ILSVRC datapath h...
20

d1042d03   Chunk   staged.
21
22
23
24
import numpy as np
from numpy.random import randn
import pandas as pd
from scipy import stats
ec755e37   Chunk   cropping.
25

d1042d03   Chunk   staged.
26
from subprocess import Popen, PIPE, STDOUT
080c30c2   Chunk   F5 lib updated. I...
27
28


84648488   Chunk   reverted.
29
np.random.seed(sum(map(ord, "whoami")))
d1042d03   Chunk   staged.
30
31

package_dir = os.path.dirname(os.path.abspath(__file__))
080c30c2   Chunk   F5 lib updated. I...
32
33


2c2d57c7   Chunk   ILSVRC datapath h...
34
35
class DataILSVRC(DataDumperBase):
    def __init__(self, base_dir='/media/chunk/Elements/D/data/ImageNet/img/ILSVRC2013_DET_val', category='Train'):
84648488   Chunk   reverted.
36
        DataDumperBase.__init__(self, base_dir, category)
2c2d57c7   Chunk   ILSVRC datapath h...
37
38
39
40
41
42
43
44
45
46
47
48
49
50

        self.base_dir = base_dir
        self.category = category
        self.data_dir = os.path.join(self.base_dir, self.category)

        self.dst_dir = os.path.join(self.base_dir, 'dst', self.category)
        self.list_file = os.path.join(self.dst_dir, 'file-tag.tsv')
        self.feat_dir = os.path.join(self.dst_dir, 'Feat')
        self.img_dir = os.path.join(self.dst_dir, 'Img')

        self.dict_data = {}

        self.table_name = self.base_dir.strip('/').split('/')[-1] + '-' + self.category
        self.sparkcontex = None
02528074   Chunk   staged.
51

2c2d57c7   Chunk   ILSVRC datapath h...
52
53
    def format(self):
        self.extract()
f1fa5b17   Chunk   review & streaming.
54

2c2d57c7   Chunk   ILSVRC datapath h...
55
56
57
58
59
    def _hash_copy(self, image):
        if not image.endswith('jpg'):
            img = Image.open(image)
            img.save('../res/tmp.jpg', format='JPEG')
            image = '../res/tmp.jpg'
080c30c2   Chunk   F5 lib updated. I...
60
61

        with open(image, 'rb') as f:
2c2d57c7   Chunk   ILSVRC datapath h...
62
63
64
65
66
            index = md5(f.read()).hexdigest()

        im = Jpeg(image, key=sample_key)
        self.dict_data[index] = [im.image_width, im.image_height, im.image_width * im.image_height, im.getCapacity(),
                                 im.getQuality()]
84648488   Chunk   reverted.
67

9ff70cf4   Chunk   capacity engeneer...
68
        # self.dict_data[index] = [im.image_width, im.image_height, os.path.getsize(image), im.getQuality()]
d0be60e7   Chunk   jpeg update.
69
70

        # origion:
2c2d57c7   Chunk   ILSVRC datapath h...
71
72
        # dir = base_dir + 'Img/Train/' + index[:3]
        dir = os.path.join(self.img_dir, index[:3])
1dc7c44b   Chunk   crawler-hbase-spa...
73
        if not os.path.exists(dir):
2c2d57c7   Chunk   ILSVRC datapath h...
74
75
76
77
78
79
80
81
82
83
84
            os.makedirs(dir)
        image_path = os.path.join(dir, index[3:] + '.jpg')
        # print image_path

        if not os.path.exists(image_path):
            shutil.copy(image, image_path)
        else:
            pass

    def get_feat(self, image, feattype='ibd', **kwargs):
        size = kwargs.get('size', (48, 48))
554a7b9a   Chunk   staged.
85

84648488   Chunk   reverted.
86
87
88
89
90
        if feattype == 'hog':
            feater = HOG.FeatHOG(size=size)
        elif feattype == 'ibd':
            feater = IntraBlockDiff.FeatIntraBlockDiff()
        else:
554a7b9a   Chunk   staged.
91
92
93
94
95
96
97
98
            raise Exception("Unknown feature type!")

        desc = feater.feat(image)

        return desc


    def extract_feat(self, feattype='ibd'):
84648488   Chunk   reverted.
99
        if feattype == 'hog':
554a7b9a   Chunk   staged.
100
            feater = HOG.FeatHOG(size=(48, 48))
f1fa5b17   Chunk   review & streaming.
101
        elif feattype == 'ibd':
84648488   Chunk   reverted.
102
103
104
            feater = IntraBlockDiff.FeatIntraBlockDiff()
        else:
            raise Exception("Unknown feature type!")
554a7b9a   Chunk   staged.
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130

        list_image = []
        with open(self.list_file, 'rb') as tsvfile:
            tsvfile = csv.reader(tsvfile, delimiter='\t')
            for line in tsvfile:
                list_image.append(line[0])

        dict_featbuf = {}
        for imgname in list_image:
            # if imgtag == 'True':
            image = os.path.join(self.img_dir, imgname[:3], imgname[3:] + '.jpg')
            desc = feater.feat(image)
            dict_featbuf[imgname] = desc

        for imgname, desc in dict_featbuf.items():
            # print imgname, desc
            dir = os.path.join(self.feat_dir, imgname[:3])
            if not os.path.exists(dir):
                os.makedirs(dir)
            featpath = os.path.join(dir, imgname[3:].split('.')[0] + '.' + feattype)
            with open(featpath, 'wb') as featfile:
                featfile.write(json.dumps(desc.tolist()))

    def _build_list(self, list_file=None):
        if list_file == None:
            list_file = self.list_file
080c30c2   Chunk   F5 lib updated. I...
131
132
133
134
        assert list_file != None

        ordict_img = collections.OrderedDict(sorted(self.dict_data.items(), key=lambda d: d[0]))

2c2d57c7   Chunk   ILSVRC datapath h...
135
136
137
        with open(list_file, 'w') as f:
            tsvfile = csv.writer(f, delimiter='\t')
            for key, value in ordict_img.items():
080c30c2   Chunk   F5 lib updated. I...
138
                tsvfile.writerow([key] + value)
2c2d57c7   Chunk   ILSVRC datapath h...
139
140
141
142

    def _anaylis(self, list_file=None):
        if list_file == None:
            list_file = self.list_file
080c30c2   Chunk   F5 lib updated. I...
143
144
145
146
147
        assert list_file != None

        df_ILS = pd.read_csv(list_file, names=['hash', 'width', 'height', 'size', 'capacity', 'quality'], sep='\t')
        length = df_ILS.shape[0]
        df_ILS = df_ILS.sort(['capacity', 'size', 'quality'], ascending=True)
84648488   Chunk   reverted.
148
        rand_class = stats.bernoulli.rvs(0.8, size=length)
d1042d03   Chunk   staged.
149

9ff70cf4   Chunk   capacity engeneer...
150
        df_ILS['rate'] = np.zeros(df_ILS.shape[0], np.float64)
9371f8fa   Chunk   SVM param engenee...
151
        df_ILS['chosen'] = rand_class
d1042d03   Chunk   staged.
152
        df_ILS['class'] = np.zeros(length, np.int32)
9ff70cf4   Chunk   capacity engeneer...
153

d0be60e7   Chunk   jpeg update.
154
155
        df_ILS.to_csv(list_file, header=False, index=False, sep='\t')

d1042d03   Chunk   staged.
156
    def extract(self):
d0be60e7   Chunk   jpeg update.
157
        for path, subdirs, files in os.walk(self.data_dir):
2c2d57c7   Chunk   ILSVRC datapath h...
158
159
            for name in files:
                imagepath = os.path.join(path, name)
f1fa5b17   Chunk   review & streaming.
160
                # print imagepath
2c2d57c7   Chunk   ILSVRC datapath h...
161
162
163
                try:
                    self._hash_copy(imagepath)
                except:
d1042d03   Chunk   staged.
164
165
166
167
168
                    pass

        self._build_list()
        self._anaylis()

2c2d57c7   Chunk   ILSVRC datapath h...
169

d1042d03   Chunk   staged.
170
171
    def _embed_outer(self):
        self.dict_data = {}
2c2d57c7   Chunk   ILSVRC datapath h...
172
        dict_embedresult = {}
84648488   Chunk   reverted.
173
        os.environ["CLASSPATH"] = os.path.join(package_dir, "../libs/F5/")
9ff70cf4   Chunk   capacity engeneer...
174
        cmd = 'java Embed %s %s -e %s  -p password -c "stegan by chunk  " -q %d'
080c30c2   Chunk   F5 lib updated. I...
175
176
177

        df_ILS = pd.read_csv(self.list_file,
                             names=['hash', 'width', 'height', 'size', 'capacity', 'quality', 'chosen', 'class'],
d0be60e7   Chunk   jpeg update.
178
                             sep='\t')
080c30c2   Chunk   F5 lib updated. I...
179
        df_ILS_TARGET = df_ILS[df_ILS['chosen'] == 1]
9ff70cf4   Chunk   capacity engeneer...
180

84648488   Chunk   reverted.
181
        for hash, size, quality in zip(df_ILS_TARGET['hash'], df_ILS_TARGET['size'], df_ILS_TARGET['quality']):
080c30c2   Chunk   F5 lib updated. I...
182
            path_img = os.path.join(self.img_dir, hash[:3], hash[3:] + '.jpg')
d0be60e7   Chunk   jpeg update.
183
            if path_img:
9ff70cf4   Chunk   capacity engeneer...
184
                print path_img
84648488   Chunk   reverted.
185
                p = Popen(cmd % (path_img, 'res/tmp.jpg', 'res/toembed', quality), shell=True, stdout=PIPE,
d0be60e7   Chunk   jpeg update.
186
                          stderr=STDOUT)
080c30c2   Chunk   F5 lib updated. I...
187
188
                dict_embedresult[hash] = [line.strip('\n') for line in p.stdout.readlines()]
                try:
84648488   Chunk   reverted.
189
                    self._hash_copy('res/tmp.jpg')
9ff70cf4   Chunk   capacity engeneer...
190
                except:
d0be60e7   Chunk   jpeg update.
191
                    pass
080c30c2   Chunk   F5 lib updated. I...
192
193
194
195

        with open(self.list_file + '.embed.log', 'wb') as f:
            tsvfile = csv.writer(f, delimiter='\t')
            for key, value in dict_embedresult.items():
9ff70cf4   Chunk   capacity engeneer...
196
                tsvfile.writerow([key] + value)
080c30c2   Chunk   F5 lib updated. I...
197
198
199
200
201

        self._build_list(self.list_file + '.embed')

        # merge
        df_ILS_EMBED = pd.read_csv(self.list_file + '.embed', names=['hash', 'width', 'height', 'size', 'quality'],
080c30c2   Chunk   F5 lib updated. I...
202
203
                                   sep='\t')
        length = df_ILS_EMBED.shape[0]
d0be60e7   Chunk   jpeg update.
204
        df_ILS_EMBED = df_ILS_EMBED.sort(['size', 'quality'], ascending=True)
84648488   Chunk   reverted.
205
        df_ILS_EMBED['chosen'] = np.zeros(length, np.int32)
d0be60e7   Chunk   jpeg update.
206
207
208
209
210
211
212
213
        df_ILS_EMBED['class'] = np.ones(length, np.int32)

        df_ILS = df_ILS.append(df_ILS_EMBED, ignore_index=True)
        df_ILS.to_csv(self.list_file, header=False, index=False, sep='\t')

    def _embed_inner(self, rate=None):
        self.dict_data = {}
        f5 = F5.F5(sample_key, 1)
080c30c2   Chunk   F5 lib updated. I...
214
        tmp_img = os.path.join(package_dir, '../res/tmp.jpg')
9ff70cf4   Chunk   capacity engeneer...
215
216
217
218
219
        df_ILS = pd.read_csv(self.list_file,
                             names=['hash', 'width', 'height', 'size', 'capacity', 'quality', 'rate', 'chosen',
                                    'class'],
                             sep='\t')
        df_ILS_TARGET = df_ILS[df_ILS['chosen'] == 1]
84648488   Chunk   reverted.
220

9ff70cf4   Chunk   capacity engeneer...
221
222
223
224
225
226
227
228
229
        for hash, capacity in zip(df_ILS_TARGET['hash'], df_ILS_TARGET['capacity']):
            path_img = os.path.join(self.img_dir, hash[:3], hash[3:] + '.jpg')
            if path_img:
                print path_img
                if rate == None:
                    embed_rate = f5.embed_raw_data(path_img, os.path.join(package_dir, '../res/toembed'), tmp_img)
                else:
                    assert (rate >= 0 and rate < 1)
                    # print capacity
84648488   Chunk   reverted.
230
                    hidden = np.random.bytes(int(capacity * rate) / 8)
9ff70cf4   Chunk   capacity engeneer...
231
232
                    embed_rate = f5.embed_raw_data(path_img, hidden, tmp_img, frommem=True)
                try:
9371f8fa   Chunk   SVM param engenee...
233
                    with open(tmp_img, 'rb') as f:
9ff70cf4   Chunk   capacity engeneer...
234
235
236
237
238
239
                        index = md5(f.read()).hexdigest()
                    im = Jpeg(tmp_img, key=sample_key)
                    self.dict_data[index] = [im.image_width, im.image_height, im.image_width * im.image_height,
                                             im.getCapacity(),
                                             im.getQuality(), embed_rate]

84648488   Chunk   reverted.
240
                    dir = os.path.join(self.img_dir, index[:3])
9ff70cf4   Chunk   capacity engeneer...
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
                    if not os.path.exists(dir):
                        os.makedirs(dir)
                    image_path = os.path.join(dir, index[3:] + '.jpg')
                    if not os.path.exists(image_path):
                        shutil.copy(tmp_img, image_path)
                    else:
                        pass
                except:
                    pass

        self._build_list(self.list_file + '.embed')

        # merge
        df_ILS_EMBED = pd.read_csv(self.list_file + '.embed',
                                   names=['hash', 'width', 'height', 'size', 'capacity', 'quality', 'rate'],
                                   sep='\t')

        df_ILS_EMBED = df_ILS_EMBED.sort(['rate', 'capacity', 'size', 'quality'], ascending=True)
84648488   Chunk   reverted.
259
        df_ILS_EMBED['chosen'] = np.zeros(df_ILS_EMBED.shape[0], np.int32)
9ff70cf4   Chunk   capacity engeneer...
260
261
262
263
264
265
266
267
268
269
270
271
        df_ILS_EMBED['class'] = np.ones(df_ILS_EMBED.shape[0], np.int32)

        # print df_ILS_EMBED.dtypes
        # print df_ILS.dtypes
        # Form the intersection of two Index objects. Sortedness of the result is not guaranteed
        df_ILS = df_ILS.append(df_ILS_EMBED, ignore_index=True)
        df_ILS.to_csv(self.list_file, header=False, index=False, sep='\t')

    def embed(self, rate=None):
        self._embed_inner(rate)

    def get_table(self):
554a7b9a   Chunk   staged.
272
        if self.table != None:
f1fa5b17   Chunk   review & streaming.
273
            return self.table
9371f8fa   Chunk   SVM param engenee...
274

9ff70cf4   Chunk   capacity engeneer...
275
        if self.connection is None:
84648488   Chunk   reverted.
276
            c = happybase.Connection('HPC-server')
ec755e37   Chunk   cropping.
277
            self.connection = c
e6be6b61   Chunk   import caffe.
278
279
280

        tables = self.connection.tables()
        if self.table_name not in tables:
ec755e37   Chunk   cropping.
281
282
283
284
285
286
287
288
            families = {'cf_pic': dict(),
                        'cf_info': dict(max_versions=10),
                        'cf_tag': dict(),
                        'cf_feat': dict(),
                        }
            self.connection.create_table(name=self.table_name, families=families)

        table = self.connection.table(name=self.table_name)
b9990e77   Chunk   staged.
289

ec755e37   Chunk   cropping.
290
291
292
293
294
        self.table = table

        return table


e6be6b61   Chunk   import caffe.
295
    def store_image(self):
ec755e37   Chunk   cropping.
296
297
298
299
300
301
        if self.table == None:
            self.table = self.get_table()

        dict_databuf = {}

        with open(self.list_file, 'rb') as tsvfile:
b9990e77   Chunk   staged.
302
303
            tsvfile = csv.reader(tsvfile, delimiter='\t')
            for line in tsvfile:
25c0c9c9   Chunk   feat.ravel()[[i*3...
304
                path_img = os.path.join(self.img_dir, line[0][:3], line[0][3:] + '.jpg')
e6be6b61   Chunk   import caffe.
305
                if path_img:
bde8352b   Chunk   shuffling.
306
307
                    with open(path_img, 'rb') as fpic:
                        dict_databuf[line[0] + '.jpg'] = fpic.read()
ec755e37   Chunk   cropping.
308

bde8352b   Chunk   shuffling.
309
        try:
ec755e37   Chunk   cropping.
310
311
            with self.table.batch(batch_size=5000) as b:
                for imgname, imgdata in dict_databuf.items():
84648488   Chunk   reverted.
312
                    b.put(imgname, {'cf_pic:data': imgdata})
2c2d57c7   Chunk   ILSVRC datapath h...
313
        except ValueError:
f1fa5b17   Chunk   review & streaming.
314
            raise
2c2d57c7   Chunk   ILSVRC datapath h...
315
316
317
318
319
320
321
322
323


    def store_info(self, infotype='all'):
        if self.table == None:
            self.table = self.get_table()

        dict_infobuf = {}

        with open(self.list_file, 'rb') as tsvfile:
f4fb4381   Chunk   staged.
324
325
326
327
328
            tsvfile = csv.reader(tsvfile, delimiter='\t')
            for line in tsvfile:
                dict_infobuf[line[0] + '.jpg'] = line[1:-2]

        if infotype == 'all':
2c2d57c7   Chunk   ILSVRC datapath h...
329
330
331
332
333
            try:
                with self.table.batch(batch_size=5000) as b:
                    for imgname, imginfo in dict_infobuf.items():
                        b.put(imgname,
                              {'cf_info:width': imginfo[0], 'cf_info:height': imginfo[1], 'cf_info:size': imginfo[2],
51708346   Chunk   final experiments...
334
                               'cf_info:capacity': imginfo[3],
2c2d57c7   Chunk   ILSVRC datapath h...
335
336
337
338
339
340
341
                               'cf_info:quality': imginfo[4]})
            except ValueError:
                raise
        else:
            raise Exception("Unknown infotype!")


d47ae6ce   Chunk   staged.
342
    def store_tag(self, tagtype='all'):
f1fa5b17   Chunk   review & streaming.
343
        if self.table == None:
d47ae6ce   Chunk   staged.
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
            self.table = self.get_table()

        dict_tagbuf = {}

        with open(self.list_file, 'rb') as tsvfile:
            tsvfile = csv.reader(tsvfile, delimiter='\t')
            for line in tsvfile:
                dict_tagbuf[line[0] + '.jpg'] = line[-2:]

        if tagtype == 'all':
            try:
                with self.table.batch(batch_size=5000) as b:
                    for imgname, imgtag in dict_tagbuf.items():
                        b.put(imgname, {'cf_tag:chosen': imgtag[0], 'cf_tag:class': imgtag[1]})
            except ValueError:
                raise
        else:
2c2d57c7   Chunk   ILSVRC datapath h...
361
            raise Exception("Unknown tagtype!")
ad70caf6   Chunk   staged.
362

2c2d57c7   Chunk   ILSVRC datapath h...
363
364
365
366
367
368
369
370
371

    def store_feat(self, feattype='ibd'):
        if self.table == None:
            self.table = self.get_table()

        dict_featbuf = {}
        for path, subdirs, files in os.walk(self.feat_dir):
            for name in files:
                featpath = os.path.join(path, name)
24768a99   Chunk   mode 'hbase' fini...
372
                # print featpath
2c2d57c7   Chunk   ILSVRC datapath h...
373
374
375
376
                with open(featpath, 'rb') as featfile:
                    imgname = path.split('/')[-1] + name.replace('.' + feattype, '.jpg')
                    dict_featbuf[imgname] = featfile.read()

489c5608   Chunk   debugging...
377
        try:
2c2d57c7   Chunk   ILSVRC datapath h...
378
379
380
381
            with self.table.batch(batch_size=5000) as b:
                for imgname, featdesc in dict_featbuf.items():
                    b.put(imgname, {'cf_feat:' + feattype: featdesc})
        except ValueError:
2c2d57c7   Chunk   ILSVRC datapath h...
382
            raise
84648488   Chunk   reverted.
383
            pass
cb798a7f   Chunk   libs & scripts in...
384
385
386
387
388
389
390
391
392


    def load_data(self, mode='local', feattype='ibd', tagtype='class'):
        INDEX = []
        X = []
        Y = []

        if mode == "local":

080c30c2   Chunk   F5 lib updated. I...
393
            dict_dataset = {}
cb798a7f   Chunk   libs & scripts in...
394
395
396
397
398
399

            with open(self.list_file, 'rb') as tsvfile:
                tsvfile = csv.reader(tsvfile, delimiter='\t')
                for line in tsvfile:
                    hash = line[0]
                    tag = line[-1]
84648488   Chunk   reverted.
400
                    path_feat = os.path.join(self.feat_dir, hash[:3], hash[3:] + '.' + feattype)
554a7b9a   Chunk   staged.
401
402
                    if path_feat:
                        with open(path_feat, 'rb') as featfile:
cb798a7f   Chunk   libs & scripts in...
403
404
                            dict_dataset[hash] = (tag, json.loads(featfile.read()))

cb798a7f   Chunk   libs & scripts in...
405
            for tag, feat in dict_dataset.values():
080c30c2   Chunk   F5 lib updated. I...
406
                X.append([item for sublist in feat for subsublist in sublist for item in subsublist])
cb798a7f   Chunk   libs & scripts in...
407
                Y.append(int(tag))
84648488   Chunk   reverted.
408

080c30c2   Chunk   F5 lib updated. I...
409
        elif mode == "remote" or mode == "hbase":
2c2d57c7   Chunk   ILSVRC datapath h...
410
411
412
413
414
415
416
417
            if self.table == None:
                self.table = self.get_table()

            col_feat, col_tag = 'cf_feat:' + feattype, 'cf_tag:' + tagtype
            for key, data in self.table.scan(columns=[col_feat, col_tag]):
                X.append(json.loads(data[col_feat]))
                Y.append(1 if data[col_tag] == 'True' else 0)

080c30c2   Chunk   F5 lib updated. I...
418
        elif mode == "spark" or mode == "cluster":
2c2d57c7   Chunk   ILSVRC datapath h...
419
            if self.sparkcontex == None:
080c30c2   Chunk   F5 lib updated. I...
420
421
422
423
424
425
426
                self.sparkcontex = SC.Sparker(host='HPC-server', appname='ImageCV', master='spark://HPC-server:7077')

            result = self.sparkcontex.read_habase(self.table_name)  # result = {key:[feat,tag],...}
            for feat, tag in result:
                X.append(feat)
                Y.append(tag)

080c30c2   Chunk   F5 lib updated. I...
427
428
        else:
            raise Exception("Unknown mode!")
2c2d57c7   Chunk   ILSVRC datapath h...
429

84648488   Chunk   reverted.
430
        return X, Y
2c2d57c7   Chunk   ILSVRC datapath h...

84648488   Chunk   reverted.

bde8352b   Chunk   shuffling.

f1fa5b17   Chunk   review & streaming.

2c2d57c7   Chunk   ILSVRC datapath h...

d0be60e7   Chunk   jpeg update.

ec755e37   Chunk   cropping.

bbd2f705   Chunk   cropping.

ec755e37   Chunk   cropping.

b9990e77   Chunk   staged.

84648488   Chunk   reverted.

bde8352b   Chunk   shuffling.

e6be6b61   Chunk   import caffe.

b9990e77   Chunk   staged.

ec755e37   Chunk   cropping.

d0be60e7   Chunk   jpeg update.

b9990e77   Chunk   staged.

2c2d57c7   Chunk   ILSVRC datapath h...

ec755e37   Chunk   cropping.

2c2d57c7   Chunk   ILSVRC datapath h...

ec755e37   Chunk   cropping.

84648488   Chunk   reverted.

02528074   Chunk   staged.

2c2d57c7   Chunk   ILSVRC datapath h...

ec755e37   Chunk   cropping.

02528074   Chunk   staged.

84648488   Chunk   reverted.

2c2d57c7   Chunk   ILSVRC datapath h...

02528074   Chunk   staged.

2c2d57c7   Chunk   ILSVRC datapath h...

cb798a7f   Chunk   libs & scripts in...

2c2d57c7   Chunk   ILSVRC datapath h...

bde8352b   Chunk   shuffling.

2c2d57c7   Chunk   ILSVRC datapath h...

bde8352b   Chunk   shuffling.

84648488   Chunk   reverted.