84648488
Chunk
reverted.
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
|
this is to be embeded.
//0216
vim of clang - https://github.com/JBakamovic/yavide
# Usage overview
Category | Shortcut | Description
--------------------------------- | --------------------------------- | ---------------------------------
**Project management** | |
| `<Ctrl-s>n` | Create new project
| `<Ctrl-s>i` | Import project with already existing code base
| `<Ctrl-s>o` | Open project
| `<Ctrl-s>c` | Close project
| `<Ctrl-s>s` | Save project
| `<Ctrl-s>d` | Delete project
**Buffer management** | |
| `<Ctrl-c>` | Close current buffer
| `<Ctrl-s>` | Save current buffer
| `<Ctrl-Tab>` | Go to next buffer
| `<Ctrl-Shift-Tab>` | Go to previous buffer
| `<Ctrl-Down>` | Scroll buffer by one line (down)
| `<Ctrl-Up>` | Scroll buffer by one line (up)
**Buffer modes** | |
| `<ESC>` | Enter the `normal` mode
| `<a>` | Enter the `insert` mode (append after cursor)
| `<i>` | Enter the `insert` mode (insert before cursor)
| `<Shift-v>` | Enter the `visual` mode (line mode)
| `<v>` | Enter the `visual` mode (character mode)
**Buffer editing** | |
| `<Ctrl-a>` | Select all
| `<Ctrl-x>` | Cut
| `<Ctrl-c>` | Copy
| `<Ctrl-v>` | Paste
| `<Ctrl-z>` | Undo
| `<Ctrl-r>` | Redo
| `<Shift-s>` | Delete the whole line
===========多维随机变量!!!!!!!!!===========
1.协方差矩阵:
对角相乘,然后相除,得到的比值就是相关系数的平方。
所以协方差矩阵用于查看各个随机变量之间的(线性)相关关系。
2.
===========参数估计 及 假设检验!!!!!!!!!===========
1.经典统计和贝叶斯统计的区别:
p(x;theta),p(x|theta)
2.page 286 - 我们的卡方检测呼之欲出。。。 χ2
3.“显著性”这一说法的来历
4.
5.
http://zh.wikipedia.org/wiki/%E7%9A%AE%E7%88%BE%E6%A3%AE%E5%8D%A1%E6%96%B9%E6%AA%A2%E5%AE%9A
“皮尔森卡方检定”可用于两种情境的变项比较:适配度检定,和独立性检定。
“适配度检定”验证一组观察值的次数分配是否异于理论上的分配。
“独立性检定”验证从两个变量抽出的配对观察值组是否互相独立(例如:每次都从A国和B国各抽一个人,看他们的反应是否与国籍无关)。
不管哪个检定都包含三个步骤:
计算卡方检定的统计值“ \chi^2 ”:把每一个观察值和理论值的差做平方后、除以理论值、再加总。
计算 \chi^2 统计值的自由度“df”。
依据研究者设定的置信水平,查出自由度为 df 的卡方分配临界值,比较它与第1步骤得出的 \chi^2 统计值,推论能否拒绝虚无假设。
//0317
http://python.jobbole.com/81131/
# initialize the list of image URLs to download
urls = [
"http://www.pyimagesearch.com/wp-content/uploads/2015/01/opencv_logo.png",
"http://www.pyimagesearch.com/wp-content/uploads/2015/01/google_logo.png",
"http://www.pyimagesearch.com/wp-content/uploads/2014/12/adrian_face_detection_sidebar.png",
]
# loop over the image URLs
for url in urls:
# download the image URL and display it
print "downloading %s" % (url)
image = url_to_image(url)
cv2.imshow("Image", image)
cv2.waitKey(0)
# METHOD #2: scikit-image
from skimage import io
# loop over the image URLs
for url in urls:
# download the image using scikit-image
print "downloading %s" % (url)
image = io.imread(url)
cv2.imshow("Incorrect", image)
cv2.imshow("Correct", cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
cv2.waitKey(0)
判别式模型(Discriminative Model)是直接对条件概率p(y|x;θ)建模。常见的判别式模型有 线性回归模型、线性判别分析、支持向量机SVM、神经网络等。
即得到的模型是一个分类器
生成式模型(Generative Model)则会对x和y的联合分布p(x,y)建模,然后通过贝叶斯公式来求得p(yi|x),然后选取使得p(yi|x)最大的yi,即:
即得到的模型是一个生成器
|