Blame view

mdata/ILSVRC_S.py 18.3 KB
ea1eb31a   Chunk   spark is privileg...
1
2
3
__author__ = 'chunk'

from . import *
84648488   Chunk   reverted.
4
from ..mfeat import HOG, IntraBlockDiff
ea1eb31a   Chunk   spark is privileg...
5
from ..mspark import SC
02528074   Chunk   staged.
6
from ..common import *
ea1eb31a   Chunk   spark is privileg...
7
8
9

import os, sys
from PIL import Image
ea1eb31a   Chunk   spark is privileg...
10
11
from hashlib import md5
import csv
ea1eb31a   Chunk   spark is privileg...
12
import shutil
ea1eb31a   Chunk   spark is privileg...
13
14
15
16
17
18
19
import json
import collections
import happybase

from ..mjpeg import *
from ..msteg import *
from ..msteg.steganography import LSB, F3, F4, F5
ea1eb31a   Chunk   spark is privileg...
20
21

import numpy as np
f25fd27c   Chunk   staged. 'hbase' m...
22
from numpy.random import randn
ea1eb31a   Chunk   spark is privileg...
23
24
25
26
27
28
import pandas as pd
from scipy import stats

from subprocess import Popen, PIPE, STDOUT
import tempfile

24768a99   Chunk   mode 'hbase' fini...
29
np.random.seed(sum(map(ord, "whoami")))
f25fd27c   Chunk   staged. 'hbase' m...
30
31
32
33
34
35
36
37
38

package_dir = os.path.dirname(os.path.abspath(__file__))


class DataILSVRC_S(DataDumperBase):
    """
    This module is specially for ILSVRC data processing under spark & hbase.

    We posit that the DB(e.g. HBase) has only the images data with md5 name as id.
35cf2e3a   Chunk   staged.
39
    The task is to gennerate info(size,capacity,quality,etc.) and class & chosen tags, and then to perform embedding and finally to calcculate ibd features.
f25fd27c   Chunk   staged. 'hbase' m...
40
41

    Each step includes reading from & writing to Hbase (though PC).
4f36b116   Chunk   staged.
42
    And each step must have a 'spark' mode option, which means that the operation is performed by spark with reading & wrting through RDDs.
1dc7c44b   Chunk   crawler-hbase-spa...
43

ea1eb31a   Chunk   spark is privileg...
44
    copyright(c) 2015 chunkplus@gmail.com
1dc7c44b   Chunk   crawler-hbase-spa...
45
    """
ea1eb31a   Chunk   spark is privileg...
46

ea1eb31a   Chunk   spark is privileg...
47
48
    def __init__(self, base_dir='/media/chunk/Elements/D/data/ImageNet/img/ILSVRC2013_DET_val', category='Train'):
        DataDumperBase.__init__(self, base_dir, category)
0fbc087e   Chunk   staged.
49

ea1eb31a   Chunk   spark is privileg...
50
        self.base_dir = base_dir
4f36b116   Chunk   staged.
51
52
53
54
55
56
        self.category = category

        self.dict_data = {}
        self.rdd_data = None

        self.table_name = self.base_dir.strip('/').split('/')[-1] + '-' + self.category
1dc7c44b   Chunk   crawler-hbase-spa...
57
        self.sparkcontex = None
f4fb4381   Chunk   staged.
58
59

        self.steger = F5.F5(sample_key, 1)
ea1eb31a   Chunk   spark is privileg...
60

0fbc087e   Chunk   staged.
61
    def get_table(self):
ea1eb31a   Chunk   spark is privileg...
62
        if self.table != None:
24768a99   Chunk   mode 'hbase' fini...
63
            return self.table
4f36b116   Chunk   staged.
64
65

        if self.connection is None:
ea1eb31a   Chunk   spark is privileg...
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
            c = happybase.Connection('HPC-server')
            self.connection = c

        tables = self.connection.tables()
        if self.table_name not in tables:
            families = {'cf_pic': dict(),
                        'cf_info': dict(max_versions=10),
                        'cf_tag': dict(),
                        'cf_feat': dict(),
                        }
            self.connection.create_table(name=self.table_name, families=families)

        table = self.connection.table(name=self.table_name)

        self.table = table

        return table

    def _get_info(self, img, info_rate=None, tag_chosen=None, tag_class=None):
        """
        Tempfile is our friend. (?)
        """
d47ae6ce   Chunk   staged.
88
        info_rate = info_rate if info_rate != None else 0.0
f1fa5b17   Chunk   review & streaming.
89
        tag_chosen = tag_chosen if tag_chosen != None else stats.bernoulli.rvs(0.8)
d47ae6ce   Chunk   staged.
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
        tag_class = tag_class if tag_class != None else 0
        try:
            tmpf = tempfile.NamedTemporaryFile(suffix='.jpg', mode='w+b')
            tmpf.write(img)
            tmpf.seek(0)
            im = Jpeg(tmpf.name, key=sample_key)
            info = [str(im.image_width),
                    str(im.image_height),
                    str(im.image_width * im.image_height),
                    str(im.getCapacity()),
                    str(im.getQuality()),
                    str(info_rate),
                    str(tag_chosen),
                    str(tag_class)]
            return info
        except Exception as e:
            print e
        finally:
f25fd27c   Chunk   staged. 'hbase' m...
108
109
110
111
112
113
114
            tmpf.close()

    def _get_feat(self, image, feattype='ibd', **kwargs):
        size = kwargs.get('size', (48, 48))

        if feattype == 'hog':
            feater = HOG.FeatHOG(size=size)
1c2a3fa0   Chunk   staged.
115
        elif feattype == 'ibd':
f25fd27c   Chunk   staged. 'hbase' m...
116
117
118
            feater = IntraBlockDiff.FeatIntraBlockDiff()
        else:
            raise Exception("Unknown feature type!")
24768a99   Chunk   mode 'hbase' fini...
119

f25fd27c   Chunk   staged. 'hbase' m...
120
        desc = feater.feat(image)
1c2a3fa0   Chunk   staged.
121
122
123
124
125
126
127
128
129
130

        return desc

    def _rdd_parse_data(self, raw_row):
        """
        input: (u'key0',u'cf_feat:hog:[0.056273,...]--%--cf_pic:data:\ufffd\ufffd\...--%--cf_tag:hog:True')
        return: ([0.056273,...],1)

        In fact we can also use mapValues.
        """
f25fd27c   Chunk   staged. 'hbase' m...
131
132
133
134
135
136
137
        key = raw_row[0]
        items = raw_row[1].split('--%--')
        data = json.loads(items[0].split(':')[-1])
        return (key, data)

    def _rdd_parse_all(self, raw_row):
        key = raw_row[0]
84648488   Chunk   reverted.
138
139
140
141
142
        items = raw_row[1].split('--%--')
        data = [json.loads(item.split(':')[-1]) for item in items]
        return (key, data)

    def _rdd_embed(self, row):
f25fd27c   Chunk   staged. 'hbase' m...
143
144
145
        """
        input:
            e.g. row =('row1',[1,3400,'hello'])
ea1eb31a   Chunk   spark is privileg...
146
        return:
f25fd27c   Chunk   staged. 'hbase' m...
147
            newrow = ('row2',[34,5400,'embeded'])
ea1eb31a   Chunk   spark is privileg...
148
        """
f25fd27c   Chunk   staged. 'hbase' m...
149
        items = row[1]
ea1eb31a   Chunk   spark is privileg...
150
        capacity, rate, chosen = items[4], items[6], items[7]
84648488   Chunk   reverted.
151
        if chosen == 0:
1c2a3fa0   Chunk   staged.
152
            return None
0fbc087e   Chunk   staged.
153
154
155
156
157
158
        try:
            tmpf_src = tempfile.NamedTemporaryFile(suffix='.jpg', mode='w+b')
            tmpf_src.write(items[0])
            tmpf_src.seek(0)
            tmpf_dst = tempfile.NamedTemporaryFile(suffix='.jpg', mode='w+b')

0fbc087e   Chunk   staged.
159
            if rate == None:
1c2a3fa0   Chunk   staged.
160
161
162
163
164
                embed_rate = self.steger.embed_raw_data(tmpf_src.name, os.path.join(package_dir, '../res/toembed'),
                                                        tmpf_dst.name)
            else:
                assert (rate >= 0 and rate < 1)
                # print capacity
0fbc087e   Chunk   staged.
165
166
                hidden = np.random.bytes(int(int(capacity) * rate) / 8)
                embed_rate = self.steger.embed_raw_data(tmpf_src.name, hidden, tmpf_dst.name, frommem=True)
84648488   Chunk   reverted.
167

1c2a3fa0   Chunk   staged.
168
            tmpf_dst.seek(0)
0fbc087e   Chunk   staged.
169
            raw = tmpf_dst.read()
1c2a3fa0   Chunk   staged.
170
            index = md5(raw).hexdigest()
84648488   Chunk   reverted.
171

0fbc087e   Chunk   staged.
172
173
            return (index + '.jpg', [raw] + self._get_info(raw, embed_rate, 0, 1))

84648488   Chunk   reverted.
174
        except Exception as e:
0fbc087e   Chunk   staged.
175
176
177
178
179
180
181
182
183
            print e
            raise
        finally:
            tmpf_src.close()
            tmpf_dst.close()


    def _extract_data(self, mode='hbase', writeback=False):
        """
1c2a3fa0   Chunk   staged.
184
        Get info barely out of image data.
0fbc087e   Chunk   staged.
185
186
187
188
189
190
191
192
193
        """
        if mode == 'hbase':
            if self.table == None:
                self.table = self.get_table()

            cols = ['cf_pic:data']
            for key, data in self.table.scan(columns=cols):
                data = data['cf_pic:data']
                self.dict_data[key] = [data] + self._get_info(data)
84648488   Chunk   reverted.
194

0fbc087e   Chunk   staged.
195
196
197
198
199
            if not writeback:
                return self.dict_data
            else:
                try:
                    with self.table.batch(batch_size=5000) as b:
84648488   Chunk   reverted.
200
                        for imgname, imginfo in self.dict_data.items():
0fbc087e   Chunk   staged.
201
202
203
204
205
206
207
208
209
210
211
212
213
214
                            b.put(imgname,
                                  {
                                      # 'cf_pic:data': imginfo[0],
                                      'cf_info:width': imginfo[1],
                                      'cf_info:height': imginfo[2],
                                      'cf_info:size': imginfo[3],
                                      'cf_info:capacity': imginfo[4],
                                      'cf_info:quality': imginfo[5],
                                      'cf_info:rate': imginfo[6],
                                      'cf_tag:chosen': imginfo[7],
                                      'cf_tag:class': imginfo[8],
                                  })
                except ValueError:
                    raise
84648488   Chunk   reverted.
215

1dc7c44b   Chunk   crawler-hbase-spa...
216

f25fd27c   Chunk   staged. 'hbase' m...
217
218
219
        elif mode == 'spark':
            if self.sparkcontex == None:
                self.sparkcontex = SC.Sparker(host='HPC-server', appname='ImageILSVRC',
f1fa5b17   Chunk   review & streaming.
220
                                              master='spark://HPC-server:7077')
f25fd27c   Chunk   staged. 'hbase' m...
221
222
223
224
225

            cols = ['cf_pic:data',
                    'cf_info:width',
                    'cf_info:height',
                    'cf_info:size',
24768a99   Chunk   mode 'hbase' fini...
226
227
                    'cf_info:capacity',
                    'cf_info:quality',
f25fd27c   Chunk   staged. 'hbase' m...
228
229
230
231
232
233
234
235
236
237
238
                    'cf_info:rate',
                    'cf_tag:chosen',
                    'cf_tag:class']

            self.rdd_data = self.sparkcontex.read_hbase(self.table_name, func=self._rdd_parse_data,
                                                        collect=False).mapValues(
                lambda data: [data] + self._get_info(data))

            if not writeback:
                return self.rdd_data
            else:
1c2a3fa0   Chunk   staged.
239
240
241
242
243
244
245
246
                self.sparkcontex.write_hbase(self.table_name, self.rdd_data, fromrdd=True, columns=cols)

        else:
            raise Exception("Unknown mode!")


    def _embed_data(self, mode='hbase', rate=None, readforward=False, writeback=False):
        if mode == 'hbase':
24768a99   Chunk   mode 'hbase' fini...
247
            if self.table == None:
f25fd27c   Chunk   staged. 'hbase' m...
248
249
250
251
252
                self.table = self.get_table()

            if readforward:
                self.dict_data = {}
                cols = ['cf_pic:data',
02528074   Chunk   staged.
253
254
                        'cf_info:width',
                        'cf_info:height',
0bd44a28   Chunk   staged.
255
                        'cf_info:size',
0fbc087e   Chunk   staged.
256
                        'cf_info:capacity',
1c2a3fa0   Chunk   staged.
257
258
259
260
261
262
263
264
265
266
267
                        'cf_info:quality',
                        'cf_info:rate',
                        'cf_tag:chosen',
                        'cf_tag:class']
                for key, data in self.table.scan(columns=cols):
                    data = [data[k] for k in cols]
                    self.dict_data[key] = data

            dict_data_ext = {}

            for imgname, imgdata in self.dict_data.items():
0fbc087e   Chunk   staged.
268
                try:
3b4e250d   Chunk   staged.
269
                    tmpf_src = tempfile.NamedTemporaryFile(suffix='.jpg', mode='w+b')
02528074   Chunk   staged.
270
                    tmpf_src.write(imgdata[0])
1c2a3fa0   Chunk   staged.
271
272
273
274
                    tmpf_src.seek(0)
                    tmpf_dst = tempfile.NamedTemporaryFile(suffix='.jpg', mode='w+b')

                    if rate == None:
3b4e250d   Chunk   staged.
275
276
                        embed_rate = self.steger.embed_raw_data(tmpf_src.name,
                                                                os.path.join(package_dir, '../res/toembed'),
02528074   Chunk   staged.
277
                                                                tmpf_dst.name)
0bd44a28   Chunk   staged.
278
                    else:
1c2a3fa0   Chunk   staged.
279
                        assert (rate >= 0 and rate < 1)
3b4e250d   Chunk   staged.
280
                        # print capacity
0fbc087e   Chunk   staged.
281
282
283
                        hidden = np.random.bytes(int(int(imgdata[4]) * rate) / 8)
                        embed_rate = self.steger.embed_raw_data(tmpf_src.name, hidden, tmpf_dst.name, frommem=True)

02528074   Chunk   staged.
284
                    tmpf_dst.seek(0)
0bd44a28   Chunk   staged.
285
                    raw = tmpf_dst.read()
e3e7e73a   Chunk   spider standalone...
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
                    index = md5(raw).hexdigest()
                    dict_data_ext[index + '.jpg'] = [raw] + self._get_info(raw, embed_rate, 0, 1)


                except Exception as e:
                    print e
                    raise
                finally:
                    tmpf_src.close()
                    tmpf_dst.close()

            self.dict_data.update(dict_data_ext)

            if not writeback:
                return self.dict_data
            else:
                try:
                    with self.table.batch(batch_size=5000) as b:
                        for imgname, imginfo in dict_data_ext.items():
                            b.put(imgname,
                                  {
                                      'cf_pic:data': imginfo[0],
                                      'cf_info:width': imginfo[1],
                                      'cf_info:height': imginfo[2],
                                      'cf_info:size': imginfo[3],
                                      'cf_info:capacity': imginfo[4],
0fbc087e   Chunk   staged.
312
                                      'cf_info:quality': imginfo[5],
ea1eb31a   Chunk   spark is privileg...
313
                                      'cf_info:rate': imginfo[6],
f25fd27c   Chunk   staged. 'hbase' m...
314
                                      'cf_tag:chosen': imginfo[7],
ea1eb31a   Chunk   spark is privileg...
315
                                      'cf_tag:class': imginfo[8], })
84648488   Chunk   reverted.
316
317
                except ValueError:
                    raise
f1fa5b17   Chunk   review & streaming.
318

f25fd27c   Chunk   staged. 'hbase' m...
319
320
321
322
323
324
        elif mode == 'spark':
            if self.sparkcontex == None:
                self.sparkcontex = SC.Sparker(host='HPC-server', appname='ImageILSVRC',
                                              master='spark://HPC-server:7077')

            cols = ['cf_pic:data',
1c2a3fa0   Chunk   staged.
325
326
327
328
329
330
331
332
333
334
335
336
337
                    'cf_info:width',
                    'cf_info:height',
                    'cf_info:size',
                    'cf_info:capacity',
                    'cf_info:quality',
                    'cf_info:rate',
                    'cf_tag:chosen',
                    'cf_tag:class']

            if readforward:
                self.dict_data = {}

                for key, data in self.table.scan(columns=cols):
24768a99   Chunk   mode 'hbase' fini...
338
339
                    data = [data[k] for k in cols]
                    self.dict_data[key] = data
f25fd27c   Chunk   staged. 'hbase' m...
340
341
342
343
344
                    self.rdd_data = self.sparkcontex.read_hbase(self.table_name, func=self._rdd_parse_all,
                                                                collect=False)

            rdd_data_ext = self.rdd_data.map(lambda x: self._rdd_embed(x))
            self.rdd_data = self.rdd_data.union(rdd_data_ext)
1dc7c44b   Chunk   crawler-hbase-spa...
345
346
347
348
349

            if not writeback:
                return self.dict_data
            else:
                self.sparkcontex.write_hbase(self.table_name, self.rdd_data, fromrdd=True, columns=cols)
f25fd27c   Chunk   staged. 'hbase' m...
350
351
352

        else:
            raise Exception("Unknown mode!")
24768a99   Chunk   mode 'hbase' fini...
353

f25fd27c   Chunk   staged. 'hbase' m...
354
355
356

    def _extract_feat(self, mode='hbase', feattype='ibd', readforward=False, writeback=False, **kwargs):
        if mode == 'hbase':
0fbc087e   Chunk   staged.
357
            if self.table == None:
84648488   Chunk   reverted.
358
                self.table = self.get_table()
0fbc087e   Chunk   staged.
359

f25fd27c   Chunk   staged. 'hbase' m...
360
361
362
            if readforward:
                self.dict_data = {}
                cols = ['cf_pic:data',
1dc7c44b   Chunk   crawler-hbase-spa...
363
                        'cf_info:width',
84648488   Chunk   reverted.
364
                        'cf_info:height',
f25fd27c   Chunk   staged. 'hbase' m...
365
366
367
368
369
                        'cf_info:size',
                        'cf_info:capacity',
                        'cf_info:quality',
                        'cf_info:rate',
                        'cf_tag:chosen',
ea1eb31a   Chunk   spark is privileg...
370
                        'cf_tag:class']
ea1eb31a   Chunk   spark is privileg...
371
                for key, data in self.table.scan(columns=cols):
f25fd27c   Chunk   staged. 'hbase' m...
372
373
                    data = [data[k] for k in cols]
                    self.dict_data[key] = data
24768a99   Chunk   mode 'hbase' fini...
374

f25fd27c   Chunk   staged. 'hbase' m...
375
376
377
            for imgname, imgdata in self.dict_data.items():
                try:
                    tmpf_src = tempfile.NamedTemporaryFile(suffix='.jpg', mode='w+b')
ea1eb31a   Chunk   spark is privileg...
378
                    tmpf_src.write(imgdata[0])
f25fd27c   Chunk   staged. 'hbase' m...
379
380
381
382
383
384
385
386
387
388
389
                    tmpf_src.seek(0)

                    desc = json.dumps(self._get_feat(tmpf_src.name, feattype=feattype).tolist())

                    self.dict_data[imgname].append(desc)

                except Exception as e:
                    print e
                    raise
                finally:
                    tmpf_src.close()
1c2a3fa0   Chunk   staged.
390
391
392
393
394
395
396
397
398

            if not writeback:
                return self.dict_data
            else:
                try:
                    with self.table.batch(batch_size=5000) as b:
                        for imgname, imginfo in self.dict_data.items():
                            b.put(imgname,
                                  {
f25fd27c   Chunk   staged. 'hbase' m...
399
400
401
402
                                      'cf_pic:data': imginfo[0],
                                      'cf_info:width': imginfo[1],
                                      'cf_info:height': imginfo[2],
                                      'cf_info:size': imginfo[3],
02528074   Chunk   staged.
403
404
                                      'cf_info:capacity': imginfo[4],
                                      'cf_info:quality': imginfo[5],
0bd44a28   Chunk   staged.
405
                                      'cf_info:rate': imginfo[6],
0fbc087e   Chunk   staged.
406
                                      'cf_tag:chosen': imginfo[7],
1c2a3fa0   Chunk   staged.
407
408
409
410
411
412
413
414
415
416
417
                                      'cf_tag:class': imginfo[8],
                                      'cf_feat:' + feattype: imginfo[9]})
                except ValueError:
                    raise

        elif mode == 'spark':
            if self.sparkcontex == None:
                self.sparkcontex = SC.Sparker(host='HPC-server', appname='ImageILSVRC',
                                              master='spark://HPC-server:7077')

            cols = ['cf_pic:data',
0fbc087e   Chunk   staged.
418
419
                    'cf_info:width',
                    'cf_info:height',
84648488   Chunk   reverted.
420
                    'cf_info:size',
0fbc087e   Chunk   staged.
421
                    'cf_info:capacity',
489c5608   Chunk   debugging...
422
423
                    'cf_info:quality',
                    'cf_info:rate',
0fbc087e   Chunk   staged.
424
                    'cf_tag:chosen',
489c5608   Chunk   debugging...
425
                    'cf_tag:class']
0fbc087e   Chunk   staged.
426

1c2a3fa0   Chunk   staged.
427
            if readforward:
0fbc087e   Chunk   staged.
428
                self.dict_data = {}
02528074   Chunk   staged.
429

0bd44a28   Chunk   staged.
430
                for key, data in self.table.scan(columns=cols):
0fbc087e   Chunk   staged.
431
                    data = [data[k] for k in cols]
ea1eb31a   Chunk   spark is privileg...
432
                    self.dict_data[key] = data
f25fd27c   Chunk   staged. 'hbase' m...
433
434
                    self.rdd_data = self.sparkcontex.read_hbase(self.table_name, func=self._rdd_parse_all,
                                                                collect=False)
84648488   Chunk   reverted.
435
436

            rdd_data_ext = self.rdd_data.map(lambda x: self._rdd_embed(x))
f1fa5b17   Chunk   review & streaming.
437
            self.rdd_data = self.rdd_data.union(rdd_data_ext)
f25fd27c   Chunk   staged. 'hbase' m...
438
439
440
441
442
443

            if not writeback:
                return self.dict_data
            else:
                self.sparkcontex.write_hbase(self.table_name, self.rdd_data, fromrdd=True, columns=cols)

1c2a3fa0   Chunk   staged.
444
445
446
447
448
449
450
451
452
453
454

        else:
            raise Exception("Unknown mode!")


    def format(self):
        self._extract_data(mode='hbase', writeback=False)
        self._embed_data(mode='hbase', rate=0.1, readforward=False, writeback=False)
        self._extract_feat(mode='hbase', feattype='ibd', readforward=False, writeback=True)


24768a99   Chunk   mode 'hbase' fini...
455
456
    def load_data(self, mode='local', feattype='ibd', tagtype='class'):
        INDEX = []
f25fd27c   Chunk   staged. 'hbase' m...
457
458
459
460
461
462
        X = []
        Y = []

        if mode == "local":

            dict_dataset = {}
24768a99   Chunk   mode 'hbase' fini...
463

ea1eb31a   Chunk   spark is privileg...
464
            with open(self.list_file, 'rb') as tsvfile:
24768a99   Chunk   mode 'hbase' fini...
465
                tsvfile = csv.reader(tsvfile, delimiter='\t')
ea1eb31a   Chunk   spark is privileg...
466
                for line in tsvfile:
f25fd27c   Chunk   staged. 'hbase' m...
467
                    hash = line[0]
ea1eb31a   Chunk   spark is privileg...
468
                    tag = line[-1]
f25fd27c   Chunk   staged. 'hbase' m...
469
470
                    path_feat = os.path.join(self.feat_dir, hash[:3], hash[3:] + '.' + feattype)
                    if path_feat:
24768a99   Chunk   mode 'hbase' fini...
471
                        with open(path_feat, 'rb') as featfile:
f25fd27c   Chunk   staged. 'hbase' m...
472
473
                            dict_dataset[hash] = (tag, json.loads(featfile.read()))

ea1eb31a   Chunk   spark is privileg...
474
            for tag, feat in dict_dataset.values():
f25fd27c   Chunk   staged. 'hbase' m...
475
476
477
478
479
480
481
482
483
                X.append([item for sublist in feat for subsublist in sublist for item in subsublist])
                Y.append(int(tag))

        elif mode == "remote" or mode == "hbase":
            if self.table == None:
                self.table = self.get_table()

            col_feat, col_tag = 'cf_feat:' + feattype, 'cf_tag:' + tagtype
            for key, data in self.table.scan(columns=[col_feat, col_tag]):
1c2a3fa0   Chunk   staged.
484
485
486
487
488
489
490
491
492
493
                X.append(json.loads(data[col_feat]))
                Y.append(1 if data[col_tag] == 'True' else 0)

        elif mode == "spark" or mode == "cluster":
            if self.sparkcontex == None:
                self.sparkcontex = SC.Sparker(host='HPC-server', appname='ImageCV', master='spark://HPC-server:7077')

            result = self.sparkcontex.read_hbase(self.table_name)  # result = {key:[feat,tag],...}
            for feat, tag in result:
                X.append(feat)
f25fd27c   Chunk   staged. 'hbase' m...
494
495
496
497
                Y.append(tag)

        else:
            raise Exception("Unknown mode!")
02528074   Chunk   staged.
498
499

        return X, Y
0bd44a28   Chunk   staged.

2c507774   Chunk   staged.

1c2a3fa0   Chunk   staged.

2c507774   Chunk   staged.

84648488   Chunk   reverted.

2c507774   Chunk   staged.

e3e7e73a   Chunk   spider standalone...

8bddd8b3   Chunk   You guess what? T...

2c507774   Chunk   staged.

1c2a3fa0   Chunk   staged.

2c507774   Chunk   staged.

f1fa5b17   Chunk   review & streaming.

02528074   Chunk   staged.

0bd44a28   Chunk   staged.

f25fd27c   Chunk   staged. 'hbase' m...

e3ec1f74   Chunk   staged.

e3e7e73a   Chunk   spider standalone...

e3e7e73a   Chunk   spider standalone...

84648488   Chunk   reverted.

f25fd27c   Chunk   staged. 'hbase' m...

f1fa5b17   Chunk   review & streaming.

f25fd27c   Chunk   staged. 'hbase' m...

ea1eb31a   Chunk   spark is privileg...

84648488   Chunk   reverted.

02528074   Chunk   staged.

f1fa5b17   Chunk   review & streaming.

ea1eb31a   Chunk   spark is privileg...

0bd44a28   Chunk   staged.

e3e7e73a   Chunk   spider standalone...

0bd44a28   Chunk   staged.

ea1eb31a   Chunk   spark is privileg...

0bd44a28   Chunk   staged.

ea1eb31a   Chunk   spark is privileg...

0bd44a28   Chunk   staged.

02528074   Chunk   staged.

ea1eb31a   Chunk   spark is privileg...

02528074   Chunk   staged.

0bd44a28   Chunk   staged.

02528074   Chunk   staged.

84648488   Chunk   reverted.

02528074   Chunk   staged.

ea1eb31a   Chunk   spark is privileg...

02528074   Chunk   staged.

ea1eb31a   Chunk   spark is privileg...

ea1eb31a   Chunk   spark is privileg...

84648488   Chunk   reverted.