Blame view

mdata/ILSVRC_S.py 19.4 KB
ea1eb31a   Chunk   spark is privileg...
1
2
3
__author__ = 'chunk'

from . import *
84648488   Chunk   reverted.
4
from ..mfeat import HOG, IntraBlockDiff
ea1eb31a   Chunk   spark is privileg...
5
from ..mspark import SC
02528074   Chunk   staged.
6
from ..common import *
ea1eb31a   Chunk   spark is privileg...
7
8
9

import os, sys
from hashlib import md5
ea1eb31a   Chunk   spark is privileg...
10
11
import csv
import json
ea1eb31a   Chunk   spark is privileg...
12
import happybase
ea1eb31a   Chunk   spark is privileg...
13
14
15
16
17
18
19

from ..mjpeg import *
from ..msteg import *
from ..msteg.steganography import LSB, F3, F4, F5

import numpy as np
from scipy import stats
ea1eb31a   Chunk   spark is privileg...
20
21

import tempfile
f25fd27c   Chunk   staged. 'hbase' m...
22

ea1eb31a   Chunk   spark is privileg...
23
24
25
26
27
28
np.random.seed(sum(map(ord, "whoami")))

package_dir = os.path.dirname(os.path.abspath(__file__))


class DataILSVRC_S(DataDumperBase):
24768a99   Chunk   mode 'hbase' fini...
29
    """
f25fd27c   Chunk   staged. 'hbase' m...
30
31
32
33
34
35
36
37
38
    This module is specially for ILSVRC data processing under spark & hbase.

    We posit that the DB(e.g. HBase) has only the images data with md5 name as id.
    The task is to gennerate info(size,capacity,quality,etc.) and class & chosen tags, and then to perform embedding and finally to calcculate ibd features.

    Each step includes reading from & writing to Hbase (though PC).
    And each step must have a 'spark' mode option, which means that the operation is performed by spark with reading & wrting through RDDs.

    copyright(c) 2015 chunkplus@gmail.com
35cf2e3a   Chunk   staged.
39
    """
f25fd27c   Chunk   staged. 'hbase' m...
40
41

    def __init__(self, base='ILSVRC2013_DET_val', category='Train_1'):
4f36b116   Chunk   staged.
42
        DataDumperBase.__init__(self, base, category)
1dc7c44b   Chunk   crawler-hbase-spa...
43

ea1eb31a   Chunk   spark is privileg...
44
        self.base = base
1dc7c44b   Chunk   crawler-hbase-spa...
45
        self.category = category
ea1eb31a   Chunk   spark is privileg...
46

ea1eb31a   Chunk   spark is privileg...
47
48
        self.dict_data = {}
        self.rdd_data = None
0fbc087e   Chunk   staged.
49

ea1eb31a   Chunk   spark is privileg...
50
        self.table_name = self.base.strip('/').split('/')[-1]
4f36b116   Chunk   staged.
51
52
53
54
55
56
        if category != None:
            self.table_name += ('-' + self.category)

        self.sparkcontex = None

        self.steger = F5.F5(sample_key, 1)
1dc7c44b   Chunk   crawler-hbase-spa...
57

f4fb4381   Chunk   staged.
58
59
    def get_table(self):
        if self.table != None:
ea1eb31a   Chunk   spark is privileg...
60
            return self.table
0fbc087e   Chunk   staged.
61

ea1eb31a   Chunk   spark is privileg...
62
        if self.connection is None:
24768a99   Chunk   mode 'hbase' fini...
63
            c = happybase.Connection('HPC-server')
4f36b116   Chunk   staged.
64
65
            self.connection = c

ea1eb31a   Chunk   spark is privileg...
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
        tables = self.connection.tables()
        if self.table_name not in tables:
            families = {'cf_pic': dict(),
                        'cf_info': dict(max_versions=10),
                        'cf_tag': dict(),
                        'cf_feat': dict(),
                        }
            self.connection.create_table(name=self.table_name, families=families)

        table = self.connection.table(name=self.table_name)

        self.table = table

        return table

    def delete_table(self, table_name=None, disable=True):
        if table_name == None:
            table_name = self.table_name

        if self.connection is None:
            c = happybase.Connection('HPC-server')
            self.connection = c
d47ae6ce   Chunk   staged.
88

f1fa5b17   Chunk   review & streaming.
89
        tables = self.connection.tables()
d47ae6ce   Chunk   staged.
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
        if table_name not in tables:
            return False
        else:
            try:
                self.connection.delete_table(table_name, disable)
            except:
                print 'Exception when deleting table.'
                raise
        return True

    def _get_info(self, img, info_rate=None, tag_chosen=None, tag_class=None):
        """
        Tempfile is our friend. (?)
        """
        info_rate = info_rate if info_rate != None else 0.0
        tag_chosen = tag_chosen if tag_chosen != None else stats.bernoulli.rvs(0.8)
        tag_class = tag_class if tag_class != None else 0

f25fd27c   Chunk   staged. 'hbase' m...
108
109
110
111
112
113
114
        try:
            tmpf = tempfile.NamedTemporaryFile(suffix='.jpg', mode='w+b')
            tmpf.write(img)
            tmpf.seek(0)
            im = Jpeg(tmpf.name, key=sample_key)
            info = [
                im.image_width,
1c2a3fa0   Chunk   staged.
115
                im.image_height,
f25fd27c   Chunk   staged. 'hbase' m...
116
117
118
                im.image_width * im.image_height,
                im.getCapacity(),
                im.getQuality(),
24768a99   Chunk   mode 'hbase' fini...
119
                info_rate,
f25fd27c   Chunk   staged. 'hbase' m...
120
                tag_chosen,
1c2a3fa0   Chunk   staged.
121
122
123
124
125
126
127
128
129
130
                tag_class
            ]
            return info
        except Exception as e:
            print e
        finally:
            tmpf.close()

    def _get_feat(self, image, feattype='ibd', **kwargs):
        size = kwargs.get('size', (48, 48))
f25fd27c   Chunk   staged. 'hbase' m...
131
132
133
134
135
136
137

        if feattype == 'hog':
            feater = HOG.FeatHOG(size=size)
        elif feattype == 'ibd':
            feater = IntraBlockDiff.FeatIntraBlockDiff()
        else:
            raise Exception("Unknown feature type!")
84648488   Chunk   reverted.
138
139
140
141
142

        desc = feater.feat(image)

        return desc

f25fd27c   Chunk   staged. 'hbase' m...
143
144
145

    def _rddparse_data(raw_row):
        """
ea1eb31a   Chunk   spark is privileg...
146
        input: (u'key0',u'cf_feat:hog:[0.056273,...]--%--cf_pic:data:\ufffd\ufffd\...--%--cf_tag:hog:True')
f25fd27c   Chunk   staged. 'hbase' m...
147
        return: ([0.056273,...],1)
ea1eb31a   Chunk   spark is privileg...
148

f25fd27c   Chunk   staged. 'hbase' m...
149
        In fact we can also use mapValues.
ea1eb31a   Chunk   spark is privileg...
150
        """
84648488   Chunk   reverted.
151
        key = raw_row[0]
1c2a3fa0   Chunk   staged.
152
        # if key == '04650c488a2b163ca8a1f52da6022f03.jpg':
0fbc087e   Chunk   staged.
153
154
155
156
157
158
        # with open('/tmp/hhhh','wb') as f:
        # f.write(raw_row[1].decode('unicode-escape')).encode('latin-1')
        items = raw_row[1].decode('unicode-escape').encode('latin-1').split('--%--')
        data = items[0].split('cf_pic:data:')[-1]
        return (key, data)

0fbc087e   Chunk   staged.
159

1c2a3fa0   Chunk   staged.
160
161
162
163
164
    def _rddparse_all(raw_row):
        key = raw_row[0]
        items = raw_row[1].decode('unicode-escape').encode('latin-1').split('--%--')
        data = [items[0].split('cf_pic:data:')[-1]] + [json.loads(item.split(':')[-1]) for item in items[1:]]
        return (key, data)
0fbc087e   Chunk   staged.
165
166


84648488   Chunk   reverted.
167
    def _rdd_embed(self, row):
1c2a3fa0   Chunk   staged.
168
        """
0fbc087e   Chunk   staged.
169
        input:
1c2a3fa0   Chunk   staged.
170
            e.g. row =('row1',[1,3400,'hello'])
84648488   Chunk   reverted.
171
        return:
0fbc087e   Chunk   staged.
172
173
            newrow = ('row2',[34,5400,'embeded'])
        """
84648488   Chunk   reverted.
174
        items = row[1]
0fbc087e   Chunk   staged.
175
176
177
178
179
180
181
182
183
        capacity, rate, chosen = items[4], items[6], items[7]

        if chosen == 0:
            return None
        try:
            tmpf_src = tempfile.NamedTemporaryFile(suffix='.jpg', mode='w+b')
            tmpf_src.write(items[0])
            tmpf_src.seek(0)
            tmpf_dst = tempfile.NamedTemporaryFile(suffix='.jpg', mode='w+b')
1c2a3fa0   Chunk   staged.
184

0fbc087e   Chunk   staged.
185
186
187
188
189
190
191
192
193
            if rate == None:
                embed_rate = self.steger.embed_raw_data(tmpf_src.name, os.path.join(package_dir, '../res/toembed'),
                                                        tmpf_dst.name)
            else:
                assert (rate >= 0 and rate < 1)
                # print capacity
                hidden = np.random.bytes(int(int(capacity) * rate) / 8)
                embed_rate = self.steger.embed_raw_data(tmpf_src.name, hidden, tmpf_dst.name, frommem=True)

84648488   Chunk   reverted.
194
            tmpf_dst.seek(0)
0fbc087e   Chunk   staged.
195
196
197
198
199
            raw = tmpf_dst.read()
            index = md5(raw).hexdigest()

            return (index + '.jpg', [raw] + self._get_info(raw, embed_rate, 0, 1))

84648488   Chunk   reverted.
200
        except Exception as e:
0fbc087e   Chunk   staged.
201
202
203
204
205
206
207
208
209
210
211
212
213
214
            print e
            raise
        finally:
            tmpf_src.close()
            tmpf_dst.close()


    def _extract_data(self, mode='hbase', writeback=False, withdata=True):
        """
        Get info barely out of image data.
        """
        if mode == 'hbase':
            if self.table == None:
                self.table = self.get_table()
84648488   Chunk   reverted.
215

1dc7c44b   Chunk   crawler-hbase-spa...
216
            cols = ['cf_pic:data']
f25fd27c   Chunk   staged. 'hbase' m...
217
218
219
            for key, data in self.table.scan(columns=cols):
                data = data['cf_pic:data']
                self.dict_data[key] = [data] + self._get_info(data)
f1fa5b17   Chunk   review & streaming.
220

f25fd27c   Chunk   staged. 'hbase' m...
221
222
223
224
225
            if not writeback:
                return self.dict_data
            else:
                try:
                    with self.table.batch(batch_size=5000) as b:
24768a99   Chunk   mode 'hbase' fini...
226
227
                        for imgname, imginfo in self.dict_data.items():
                            b.put(imgname,
f25fd27c   Chunk   staged. 'hbase' m...
228
229
230
231
232
233
234
235
236
237
238
                                  {
                                      # 'cf_pic:data': imginfo[0],
                                      'cf_info:width': str(imginfo[1]),
                                      'cf_info:height': str(imginfo[2]),
                                      'cf_info:size': str(imginfo[3]),
                                      'cf_info:capacity': str(imginfo[4]),
                                      'cf_info:quality': str(imginfo[5]),
                                      'cf_info:rate': str(imginfo[6]),
                                      'cf_tag:chosen': str(imginfo[7]),
                                      'cf_tag:class': str(imginfo[8]),
                                  })
1c2a3fa0   Chunk   staged.
239
240
241
242
243
244
245
246
                except ValueError:
                    raise


        elif mode == 'spark':
            if self.sparkcontex == None:
                self.sparkcontex = SC.Sparker(host='HPC-server', appname='ImageILSVRC',
                                              master='spark://HPC-server:7077')
24768a99   Chunk   mode 'hbase' fini...
247

f25fd27c   Chunk   staged. 'hbase' m...
248
249
250
251
252
            cols = [
                'cf_pic:data',
                'cf_info:width',
                'cf_info:height',
                'cf_info:size',
02528074   Chunk   staged.
253
254
                'cf_info:capacity',
                'cf_info:quality',
0bd44a28   Chunk   staged.
255
                'cf_info:rate',
0fbc087e   Chunk   staged.
256
                'cf_tag:chosen',
1c2a3fa0   Chunk   staged.
257
258
259
260
261
262
263
264
265
266
267
                'cf_tag:class'
            ]

            # # Debug
            # tmp_data = self.sparkcontex.read_hbase(self.table_name, func=SC.rddparse_data_ILS,
            # collect=False)
            # # tmp_data = tmp_data.mapValues(lambda data: [data] + SC.rddinfo_ILS(data))
            # print tmp_data.collect()[0][1]
            # return


0fbc087e   Chunk   staged.
268
            self.rdd_data = self.sparkcontex.read_hbase(self.table_name, func=SC.rddparse_data_ILS,
3b4e250d   Chunk   staged.
269
                                                        collect=False).mapValues(
02528074   Chunk   staged.
270
                lambda data: [data] + SC.rddinfo_ILS(data))
1c2a3fa0   Chunk   staged.
271
272
273
274

            if not writeback:
                return self.rdd_data
            else:
3b4e250d   Chunk   staged.
275
276
                self.sparkcontex.write_hbase(self.table_name, self.rdd_data, fromrdd=True, columns=cols,
                                             withdata=withdata)
02528074   Chunk   staged.
277

0bd44a28   Chunk   staged.
278
        else:
1c2a3fa0   Chunk   staged.
279
            raise Exception("Unknown mode!")
3b4e250d   Chunk   staged.
280

0fbc087e   Chunk   staged.
281
282
283

    def _embed_data(self, mode='hbase', rate=None, readforward=False, writeback=False, withdata=True):
        if mode == 'hbase':
02528074   Chunk   staged.
284
            if self.table == None:
0bd44a28   Chunk   staged.
285
                self.table = self.get_table()
e3e7e73a   Chunk   spider standalone...
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311

            if readforward:
                self.dict_data = {}

                cols = [
                    'cf_pic:data',
                    'cf_info:width',
                    'cf_info:height',
                    'cf_info:size',
                    'cf_info:capacity',
                    'cf_info:quality',
                    'cf_info:rate',
                    'cf_tag:chosen',
                    'cf_tag:class'
                ]

                for key, data in self.table.scan(columns=cols):
                    data = [data[k] for k in cols]
                    self.dict_data[key] = data

            dict_data_ext = {}

            for imgname, imgdata in self.dict_data.items():
                capacity, chosen = int(imgdata[4]), int(imgdata[7])

                if chosen == 0:
0fbc087e   Chunk   staged.
312
                    continue
ea1eb31a   Chunk   spark is privileg...
313

f25fd27c   Chunk   staged. 'hbase' m...
314
                try:
ea1eb31a   Chunk   spark is privileg...
315
                    tmpf_src = tempfile.NamedTemporaryFile(suffix='.jpg', mode='w+b')
84648488   Chunk   reverted.
316
317
                    tmpf_src.write(imgdata[0])
                    tmpf_src.seek(0)
f1fa5b17   Chunk   review & streaming.
318
                    tmpf_dst = tempfile.NamedTemporaryFile(suffix='.jpg', mode='w+b')
f25fd27c   Chunk   staged. 'hbase' m...
319
320
321
322
323
324

                    if rate == None:
                        embed_rate = self.steger.embed_raw_data(tmpf_src.name,
                                                                os.path.join(package_dir, '../res/toembed'),
                                                                tmpf_dst.name)
                    else:
1c2a3fa0   Chunk   staged.
325
326
327
328
329
330
331
332
333
334
335
336
337
                        assert (rate >= 0 and rate < 1)
                        # print capacity
                        hidden = np.random.bytes(int(capacity * rate) / 8)
                        embed_rate = self.steger.embed_raw_data(tmpf_src.name, hidden, tmpf_dst.name, frommem=True)

                    tmpf_dst.seek(0)
                    raw = tmpf_dst.read()
                    index = md5(raw).hexdigest()
                    dict_data_ext[index + '.jpg'] = [raw] + self._get_info(raw, embed_rate, 0, 1)


                except Exception as e:
                    print e
24768a99   Chunk   mode 'hbase' fini...
338
339
                    raise
                finally:
f25fd27c   Chunk   staged. 'hbase' m...
340
341
342
343
344
                    tmpf_src.close()
                    tmpf_dst.close()

            self.dict_data.update(dict_data_ext)

1dc7c44b   Chunk   crawler-hbase-spa...
345
346
347
348
349
            if not writeback:
                return self.dict_data
            else:
                try:
                    with self.table.batch(batch_size=5000) as b:
f25fd27c   Chunk   staged. 'hbase' m...
350
351
352
                        for imgname, imginfo in dict_data_ext.items():
                            b.put(imgname,
                                  {
24768a99   Chunk   mode 'hbase' fini...
353
                                      'cf_pic:data': imginfo[0],
f25fd27c   Chunk   staged. 'hbase' m...
354
355
356
                                      'cf_info:width': str(imginfo[1]),
                                      'cf_info:height': str(imginfo[2]),
                                      'cf_info:size': str(imginfo[3]),
0fbc087e   Chunk   staged.
357
                                      'cf_info:capacity': str(imginfo[4]),
84648488   Chunk   reverted.
358
                                      'cf_info:quality': str(imginfo[5]),
0fbc087e   Chunk   staged.
359
                                      'cf_info:rate': str(imginfo[6]),
f25fd27c   Chunk   staged. 'hbase' m...
360
361
362
                                      'cf_tag:chosen': str(imginfo[7]),
                                      'cf_tag:class': str(imginfo[8]),
                                  })
1dc7c44b   Chunk   crawler-hbase-spa...
363
                except ValueError:
84648488   Chunk   reverted.
364
                    raise
f25fd27c   Chunk   staged. 'hbase' m...
365
366
367
368
369

        elif mode == 'spark':
            if self.sparkcontex == None:
                self.sparkcontex = SC.Sparker(host='HPC-server', appname='ImageILSVRC',
                                              master='spark://HPC-server:7077')
ea1eb31a   Chunk   spark is privileg...
370

ea1eb31a   Chunk   spark is privileg...
371
            cols = [
f25fd27c   Chunk   staged. 'hbase' m...
372
373
                'cf_pic:data',
                'cf_info:width',
24768a99   Chunk   mode 'hbase' fini...
374
                'cf_info:height',
f25fd27c   Chunk   staged. 'hbase' m...
375
376
377
                'cf_info:size',
                'cf_info:capacity',
                'cf_info:quality',
ea1eb31a   Chunk   spark is privileg...
378
                'cf_info:rate',
f25fd27c   Chunk   staged. 'hbase' m...
379
380
381
382
383
384
385
386
387
388
389
                'cf_tag:chosen',
                'cf_tag:class'
            ]

            if readforward:
                self.rdd_data = self.sparkcontex.read_hbase(self.table_name, func=SC.rddparse_all_ILS, collect=False)

            rdd_data_ext = self.rdd_data.map(lambda x: SC.rddembed_ILS(x, rate=rate)).filter(lambda x: x != None)
            self.rdd_data = self.rdd_data.union(rdd_data_ext)

            if not writeback:
1c2a3fa0   Chunk   staged.
390
391
392
393
394
395
396
397
398
                return self.rdd_data
            else:
                self.sparkcontex.write_hbase(self.table_name, self.rdd_data, fromrdd=True, columns=cols,
                                             withdata=withdata)

        else:
            raise Exception("Unknown mode!")


f25fd27c   Chunk   staged. 'hbase' m...
399
400
401
402
    def _extract_feat(self, mode='hbase', feattype='ibd', readforward=False, writeback=False, withdata=False):
        if mode == 'hbase':
            if self.table == None:
                self.table = self.get_table()
02528074   Chunk   staged.
403
404

            if readforward:
0bd44a28   Chunk   staged.
405
                self.dict_data = {}
0fbc087e   Chunk   staged.
406
                cols = [
1c2a3fa0   Chunk   staged.
407
408
409
410
411
412
413
414
415
416
417
                    'cf_pic:data',
                    'cf_info:width',
                    'cf_info:height',
                    'cf_info:size',
                    'cf_info:capacity',
                    'cf_info:quality',
                    'cf_info:rate',
                    'cf_tag:chosen',
                    'cf_tag:class'
                ]
                for key, data in self.table.scan(columns=cols):
0fbc087e   Chunk   staged.
418
419
                    data = [data[k] for k in cols]
                    self.dict_data[key] = data
84648488   Chunk   reverted.
420

0fbc087e   Chunk   staged.
421
            for imgname, imgdata in self.dict_data.items():
489c5608   Chunk   debugging...
422
423
                try:
                    tmpf_src = tempfile.NamedTemporaryFile(suffix='.jpg', mode='w+b')
0fbc087e   Chunk   staged.
424
                    tmpf_src.write(imgdata[0])
489c5608   Chunk   debugging...
425
                    tmpf_src.seek(0)
0fbc087e   Chunk   staged.
426

1c2a3fa0   Chunk   staged.
427
                    desc = json.dumps(self._get_feat(tmpf_src.name, feattype=feattype).tolist())
0fbc087e   Chunk   staged.
428

02528074   Chunk   staged.
429
                    self.dict_data[imgname].append(desc)
0bd44a28   Chunk   staged.
430

0fbc087e   Chunk   staged.
431
                except Exception as e:
ea1eb31a   Chunk   spark is privileg...
432
                    print e
f25fd27c   Chunk   staged. 'hbase' m...
433
434
                    raise
                finally:
84648488   Chunk   reverted.
435
436
                    tmpf_src.close()

f1fa5b17   Chunk   review & streaming.
437
            if not writeback:
f25fd27c   Chunk   staged. 'hbase' m...
438
439
440
441
442
443
                return self.dict_data
            else:
                try:
                    with self.table.batch(batch_size=5000) as b:
                        for imgname, imginfo in self.dict_data.items():
                            b.put(imgname,
1c2a3fa0   Chunk   staged.
444
445
446
447
448
449
450
451
452
453
454
                                  {
                                      'cf_pic:data': imginfo[0],
                                      'cf_info:width': str(imginfo[1]),
                                      'cf_info:height': str(imginfo[2]),
                                      'cf_info:size': str(imginfo[3]),
                                      'cf_info:capacity': str(imginfo[4]),
                                      'cf_info:quality': str(imginfo[5]),
                                      'cf_info:rate': str(imginfo[6]),
                                      'cf_tag:chosen': str(imginfo[7]),
                                      'cf_tag:class': str(imginfo[8]),
                                      'cf_feat:' + feattype: imginfo[9],
24768a99   Chunk   mode 'hbase' fini...
455
456
                                  })
                except ValueError:
f25fd27c   Chunk   staged. 'hbase' m...
457
458
459
460
461
462
                    raise

        elif mode == 'spark':
            if self.sparkcontex == None:
                self.sparkcontex = SC.Sparker(host='HPC-server', appname='ImageILSVRC',
                                              master='spark://HPC-server:7077')
24768a99   Chunk   mode 'hbase' fini...
463

ea1eb31a   Chunk   spark is privileg...
464
            cols = [
24768a99   Chunk   mode 'hbase' fini...
465
                'cf_pic:data',
ea1eb31a   Chunk   spark is privileg...
466
                'cf_info:width',
f25fd27c   Chunk   staged. 'hbase' m...
467
                'cf_info:height',
ea1eb31a   Chunk   spark is privileg...
468
                'cf_info:size',
f25fd27c   Chunk   staged. 'hbase' m...
469
470
                'cf_info:capacity',
                'cf_info:quality',
24768a99   Chunk   mode 'hbase' fini...
471
                'cf_info:rate',
f25fd27c   Chunk   staged. 'hbase' m...
472
473
                'cf_tag:chosen',
                'cf_tag:class',
ea1eb31a   Chunk   spark is privileg...
474
                'cf_feat:' + feattype,
f25fd27c   Chunk   staged. 'hbase' m...
475
476
477
478
479
480
481
482
483
            ]

            if readforward:
                self.rdd_data = self.sparkcontex.read_hbase(self.table_name, func=SC.rddparse_all_ILS, collect=False)

            self.rdd_data = self.rdd_data.mapValues(lambda items: SC.rddfeat_ILS(items))

            # print self.rdd_data.collect()[0]
            # return
1c2a3fa0   Chunk   staged.
484
485
486
487
488
489
490
491
492
493

            if not writeback:
                return self.rdd_data
            else:
                self.sparkcontex.write_hbase(self.table_name, self.rdd_data, fromrdd=True, columns=cols,
                                             withdata=withdata)


        else:
            raise Exception("Unknown mode!")
f25fd27c   Chunk   staged. 'hbase' m...
494
495
496
497


    def format(self):
        self._extract_data(mode='hbase', writeback=False)
02528074   Chunk   staged.
498
499
        self._embed_data(mode='hbase', rate=0.1, readforward=False, writeback=False)
        self._extract_feat(mode='hbase', feattype='ibd', readforward=False, writeback=True)
0bd44a28   Chunk   staged.
500

2c507774   Chunk   staged.
501

1c2a3fa0   Chunk   staged.
502
503
504
505
506
507
508
509
510
511
512
513
    def load_data(self, mode='local', feattype='ibd', tagtype='class'):
        INDEX = []
        X = []
        Y = []

        if mode == "local":

            dict_dataset = {}

            with open(self.list_file, 'rb') as tsvfile:
                tsvfile = csv.reader(tsvfile, delimiter='\t')
                for line in tsvfile:
2c507774   Chunk   staged.
514
515
                    hash = line[0]
                    tag = line[-1]
84648488   Chunk   reverted.
516
                    path_feat = os.path.join(self.feat_dir, hash[:3], hash[3:] + '.' + feattype)
2c507774   Chunk   staged.
517
                    if path_feat:
e3e7e73a   Chunk   spider standalone...
518
                        with open(path_feat, 'rb') as featfile:
8bddd8b3   Chunk   You guess what? T...
519
520
521
                            dict_dataset[hash] = (tag, json.loads(featfile.read()))

            for tag, feat in dict_dataset.values():
2c507774   Chunk   staged.
522
523
                X.append([item for sublist in feat for subsublist in sublist for item in subsublist])
                Y.append(int(tag))
1c2a3fa0   Chunk   staged.
524

2c507774   Chunk   staged.
525
        elif mode == "remote" or mode == "hbase":
f1fa5b17   Chunk   review & streaming.
526
            if self.table == None:
02528074   Chunk   staged.
527
                self.table = self.get_table()
0bd44a28   Chunk   staged.
528

f25fd27c   Chunk   staged. 'hbase' m...
529
530
531
            col_feat, col_tag = 'cf_feat:' + feattype, 'cf_tag:' + tagtype
            for key, data in self.table.scan(columns=[col_feat, col_tag]):
                X.append(json.loads(data[col_feat]))
e3ec1f74   Chunk   staged.
532
                Y.append(1 if data[col_tag] == 'True' else 0)
e3e7e73a   Chunk   spider standalone...
533
534
535
536
537
538
539

        elif mode == "spark" or mode == "cluster":
            if self.sparkcontex == None:
                self.sparkcontex = SC.Sparker(host='HPC-server', appname='ImageCV', master='spark://HPC-server:7077')

            result = self.sparkcontex.read_hbase(self.table_name)  # result = {key:[feat,tag],...}
            for feat, tag in result:
e3e7e73a   Chunk   spider standalone...
540
541
542
543
544
545
546
                X.append(feat)
                Y.append(tag)

        else:
            raise Exception("Unknown mode!")

        return X, Y
84648488   Chunk   reverted.

f25fd27c   Chunk   staged. 'hbase' m...

f1fa5b17   Chunk   review & streaming.

f25fd27c   Chunk   staged. 'hbase' m...

ea1eb31a   Chunk   spark is privileg...

84648488   Chunk   reverted.

02528074   Chunk   staged.

f1fa5b17   Chunk   review & streaming.

ea1eb31a   Chunk   spark is privileg...

0bd44a28   Chunk   staged.

e3e7e73a   Chunk   spider standalone...

0bd44a28   Chunk   staged.

ea1eb31a   Chunk   spark is privileg...

0bd44a28   Chunk   staged.

ea1eb31a   Chunk   spark is privileg...

0bd44a28   Chunk   staged.

02528074   Chunk   staged.

ea1eb31a   Chunk   spark is privileg...

02528074   Chunk   staged.

0bd44a28   Chunk   staged.

02528074   Chunk   staged.

84648488   Chunk   reverted.

02528074   Chunk   staged.

ea1eb31a   Chunk   spark is privileg...

02528074   Chunk   staged.

ea1eb31a   Chunk   spark is privileg...

ea1eb31a   Chunk   spark is privileg...

84648488   Chunk   reverted.