be12257b
Chunk
data-feat-model f...
|
1
2
|
__author__ = 'chunk'
|
9371f8fa
Chunk
SVM param engenee...
|
3
|
from sklearn import cross_validation
|
f4fb4381
Chunk
staged.
|
4
|
|
2bf33465
Chunk
staged.
|
5
|
from ..common import *
|
84648488
Chunk
reverted.
|
6
|
from ..mdata import ILSVRC, ILSVRC_S
|
61e78eb3
Chunk
staged.
|
7
|
from ..mmodel.svm import SVM
|
84648488
Chunk
reverted.
|
8
|
|
2bf33465
Chunk
staged.
|
9
|
import gzip
|
5a469df5
Chunk
staged.
|
10
11
12
|
import cPickle
timer = Timer()
|
84648488
Chunk
reverted.
|
13
|
package_dir = os.path.dirname(os.path.abspath(__file__))
|
5a469df5
Chunk
staged.
|
14
15
|
|
be12257b
Chunk
data-feat-model f...
|
16
|
def test_SVM_ILSVRC():
|
d2603183
Chunk
staged.
|
17
|
timer.mark()
|
84648488
Chunk
reverted.
|
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
|
dil = ILSVRC.DataILSVRC(base_dir='/data/hadoop/ImageNet/ILSVRC/ILSVRC2013_DET_val',
category='Train_5000_0.05_orig')
X, Y = dil.load_data(mode='local') #
# X, Y = dil.load_data(mode='hbase') #
# X, Y = dil.load_data(mode='spark') #
X_train, X_test, Y_train, Y_test = cross_validation.train_test_split(X, Y, test_size=0.4,
random_state=0)
print np.array(Y).shape, np.array(X).shape
print np.array(X_train).shape, np.array(Y_train).shape
print np.array(X_test).shape, np.array(Y_test).shape
timer.report()
timer.mark()
msvm = SVM.ModelSVM(toolset='sklearn') # 4.884247s 0.777853030816
# msvm = SVM.ModelSVM(toolset='opencv') #
# msvm = SVM.ModelSVM(toolset='libsvm') #
# msvm = SVM.ModelSVM(toolset='spark')
msvm.train(X_train, Y_train)
timer.report()
timer.mark()
print msvm.test(X_test, Y_test) #
timer.report() #
# timer.mark()
# print 'or like this:'
# scores = cross_validation.cross_val_score(msvm.model, X, Y)
# print scores
# timer.report()
|
d0be60e7
Chunk
jpeg update.
|
48
49
|
|
84648488
Chunk
reverted.
|
50
|
def test_SVM_ILSVRC_HBASE():
|
d0be60e7
Chunk
jpeg update.
|
51
|
timer.mark()
|
02528074
Chunk
staged.
|
52
53
|
# dil = ILSVRC.DataILSVRC(base_dir='ILSVRC2013_DET_val', category='Train_3')
|
84648488
Chunk
reverted.
|
54
|
# X, Y = dil.load_data(mode='hbase') # pass
|
6d6d75b8
Chunk
spider LOG system.
|
55
|
|
02528074
Chunk
staged.
|
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
|
dils = ILSVRC_S.DataILSVRC_S(base='ILSVRC2013_DET_val', category='Test_1')
X, Y = dils.load_data(mode='hbase') # pass
dil = ILSVRC.DataILSVRC(base_dir='/data/hadoop/ImageNet/ILSVRC/ILSVRC2013_DET_val',
category='Test_1')
X1, Y1 = dil.load_data(mode='local')
X_train, X_test, Y_train, Y_test = cross_validation.train_test_split(X, Y, test_size=0.4,
random_state=0)
print Y, np.sum(np.array(Y) == 0), np.sum(np.array(Y) == 1)
print np.array(Y).shape, np.array(X).shape
print np.array(X_train).shape, np.array(Y_train).shape
print np.array(X_test).shape, np.array(Y_test).shape
timer.report()
timer.mark()
msvm = SVM.ModelSVM(toolset='sklearn') # 4.884247s 0.777853030816
# msvm = SVM.ModelSVM(toolset='opencv') #
# msvm = SVM.ModelSVM(toolset='libsvm') #
# msvm = SVM.ModelSVM(toolset='spark')
msvm.train(X_train, Y_train)
timer.report()
timer.mark()
print msvm.test(X_test, Y_test) #
timer.report() #
timer.mark()
print msvm.test(X1, Y1) #
|
4f36b116
Chunk
staged.
|
86
|
timer.report() #
|
02528074
Chunk
staged.
|
87
|
# timer.mark()
|
9371f8fa
Chunk
SVM param engenee...
|
88
|
# print 'or like this:'
|
51708346
Chunk
final experiments...
|
89
90
|
# scores = cross_validation.cross_val_score(msvm.model, X, Y)
# print scores
|
2bd3da3e
Chunk
staged.
|
91
|
# timer.report()
|
84648488
Chunk
reverted.
|
92
|
|
d2603183
Chunk
staged.
|
93
|
|
02528074
Chunk
staged.
|
94
|
def test_SVM_ILSVRC_SPARK():
|
9371f8fa
Chunk
SVM param engenee...
|
95
96
97
|
timer.mark()
dils = ILSVRC_S.DataILSVRC_S(base='ILSVRC2013_DET_val', category='Test_1')
rdd_dataset = dils.load_data(mode='spark') # pass
|
d0be60e7
Chunk
jpeg update.
|
98
99
100
|
timer.report()
|
4f36b116
Chunk
staged.
|
101
|
timer.mark()
|
51708346
Chunk
final experiments...
|
102
|
# msvm = SVM.ModelSVM(toolset='sklearn') #
|
9371f8fa
Chunk
SVM param engenee...
|
103
|
# msvm = SVM.ModelSVM(toolset='opencv') #
|
4f36b116
Chunk
staged.
|
104
|
# msvm = SVM.ModelSVM(toolset='libsvm') #
|
9371f8fa
Chunk
SVM param engenee...
|
105
|
msvm = SVM.ModelSVM(toolset='spark', sc=dils.sparker)
|
d0be60e7
Chunk
jpeg update.
|
106
107
108
|
msvm.train(rdd_dataset)
timer.report()
|
9371f8fa
Chunk
SVM param engenee...
|
109
|
dataset = rdd_dataset.collect()
|
d0be60e7
Chunk
jpeg update.
|
110
|
length = len(dataset)
|
6d6d75b8
Chunk
spider LOG system.
|
111
|
|
51708346
Chunk
final experiments...
|
112
113
114
115
|
X_test, Y_test = [dataset[i].features for i in range(length)], [dataset[i].label for i in
range(length)]
timer.mark()
|
e3e7e73a
Chunk
spider standalone...
|
116
117
118
119
120
121
122
123
124
125
126
127
128
|
print msvm.test(dils.sparker.sc.parallelize(X_test), Y_test) #
timer.report() #
def test_SVM_ILSVRC_S():
test_SVM_ILSVRC_HBASE()
# test_SVM_ILSVRC_SPARK()
if __name__ == '__main__':
# test_SVM_CV()
test_SVM_ILSVRC()
print 'helllo'
|
2bd3da3e
Chunk
staged.
|
|
|
02528074
Chunk
staged.
|
|
|
f4fb4381
Chunk
staged.
|
|
|
02528074
Chunk
staged.
|
|
|
9371f8fa
Chunk
SVM param engenee...
|
|
|
02528074
Chunk
staged.
|
|
|
9371f8fa
Chunk
SVM param engenee...
|
|
|
02528074
Chunk
staged.
|
|
|
84648488
Chunk
reverted.
|
|
|
02528074
Chunk
staged.
|
|
|
51708346
Chunk
final experiments...
|
|
|
02528074
Chunk
staged.
|
|
|
9371f8fa
Chunk
SVM param engenee...
|
|
|
84648488
Chunk
reverted.
|
|
|
be12257b
Chunk
data-feat-model f...
|
|
|
d0be60e7
Chunk
jpeg update.
|
|
|
be12257b
Chunk
data-feat-model f...
|
|
|
84648488
Chunk
reverted.
|
|
|